document.write( "Question 221882: Two hundred and forty meters of fencing is available to enclose a rectangular playground. What should be the dimensions of the playground to maximize the area? \n" ); document.write( "
Algebra.Com's Answer #166272 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "The perimeter of a rectangle is found by:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so the length of a rectangle in terms of perimeter and width is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The area of a rectangle is given by:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Substituting we can create an Area function in terms of width for any given perimeter:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Putting this quadratic function in standard form results in:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This graphs to a parabola opening downward, hence the vertex is a maximum. The vertex of a parabola represented by \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, the width giving the maximum area is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "John \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |