document.write( "Question 221736: find the complex number a + bi such that 5a + 3b = 1 and -5a = 7 + 4a \n" ); document.write( "
Algebra.Com's Answer #166224 by rapaljer(4671)![]() ![]() You can put this solution on YOUR website! 5a + 3b = 1 and -5a = 7 + 4a \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "From the second equation, \n" ); document.write( "-9a=7 \n" ); document.write( "a=-7/9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Back into the first equation:\r \n" ); document.write( "\n" ); document.write( "5a+3b=1 \n" ); document.write( "5(-7/9)+3b=1 \n" ); document.write( "-35/9 +3b=1\r \n" ); document.write( "\n" ); document.write( "-35/9+35/9+3b=1+35/9 \n" ); document.write( "3b=9/9+35/9 \n" ); document.write( "3b=44/9 \n" ); document.write( "b=44/27\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Check me out to see if I have any \"math\" errors here. There isn't a handy way to check this without essentially re-working it. Sorry about that!!\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "R^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Dr. Robert J. Rapalje\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |