document.write( "Question 29851: If the demand d and the supply s for snowboards are d=360/p and s=150p-510 find the profit p, in hundreds of thousands of dollars, at the equilibrium point when supply and demand equal.
\n" ); document.write( "thanks for the help
\n" ); document.write( "

Algebra.Com's Answer #16607 by ikdeep(226)\"\" \"About 
You can put this solution on YOUR website!
d=360/p ............(1)\r
\n" ); document.write( "\n" ); document.write( "s=150p-510 ..........(2)\r
\n" ); document.write( "\n" ); document.write( "it is given that at the equilibrium point when supply and demand equal.
\n" ); document.write( "thanks for the help,,so we get \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "360/p = 150p - 510 \r
\n" ); document.write( "\n" ); document.write( "on multiplying both sides by p we get \r
\n" ); document.write( "\n" ); document.write( "360 = 150p^2 - 510p\r
\n" ); document.write( "\n" ); document.write( "or 0 = 150p^2 - 510p - 360 \r
\n" ); document.write( "\n" ); document.write( "on dividing both sides by 30,, we get...\r
\n" ); document.write( "\n" ); document.write( "0 = 5p^2 - 17p - 360\r
\n" ); document.write( "\n" ); document.write( "Here you must know how we make factors i.e. splitting of the middle term...if you might not know then please contact me again and I will explain to you)... and we get......\r
\n" ); document.write( "\n" ); document.write( "0 = 5p^2 - (20 - 3)p - 360....solving the brackets wolud give...\r
\n" ); document.write( "\n" ); document.write( "0 = 5p^2 - 20p + 3p - 360\r
\n" ); document.write( "\n" ); document.write( "taking common from first two i.e. 5p^2 - 20p and last two i.e. 3p - 360
\n" ); document.write( "variables...we get \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "0 = 5p (p-4) + 3(p-4)..\r
\n" ); document.write( "\n" ); document.write( "or 0 = (5p + 3)(p - 4)..\r
\n" ); document.write( "\n" ); document.write( "You know that the product two numbers or variables becomes equal to zero if atleast one of them is zero....
\n" ); document.write( "
\n" ); document.write( "therefore either (5p + 3) = 0
\n" ); document.write( "or (p - 4)= 0
\n" ); document.write( "
\n" ); document.write( "if (5p + 3) = 0 the profit = -3/5
\n" ); document.write( "and since profit can't be in negative so this can't be values of profit
\n" ); document.write( "
\n" ); document.write( "and if (p - 4)= 0 the profit = 4\r
\n" ); document.write( "\n" ); document.write( " or profit = 4 hundreds of thousands of dollars
\n" ); document.write( "
\n" ); document.write( "hope this will help you \r
\n" ); document.write( "\n" ); document.write( "Please feel free to revert back for any further queries.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );