document.write( "Question 29742: Multipy. n^2-n-20/2n^2 x n^2 + 5n/n^2 - 25\r
\n" ); document.write( "\n" ); document.write( "note. the x between the fractions is a times sign.\r
\n" ); document.write( "\n" ); document.write( "Thank you.
\n" ); document.write( "

Algebra.Com's Answer #16489 by sdmmadam@yahoo.com(530)\"\" \"About 
You can put this solution on YOUR website!
n^2-n-20/2n^2 x n^2 + 5n/n^2 - 25
\n" ); document.write( "=[(n^2-n-20)/(2n^2)]X[(n^2 + 5n)/(n^2 - 25)]
\n" ); document.write( "=[(n-5)(n+4)/(2n^2)]X[n(n + 5)/(n+5)(n-5)]
\n" ); document.write( "Factorisation in the nr of the first fraction.
\n" ); document.write( "And using formula a^2-b^2 = (a+b)(a-b) and here a = n and b =5
\n" ); document.write( "in the dr of the second fraction
\n" ); document.write( "=[n(n-5)(n+4)(n+5)]/[(2n^2)(n+5)(n-5)] \r
\n" ); document.write( "\n" ); document.write( "=[(n+4)/(2n)] ( canceling (n-5), (n+5) and n)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );