document.write( "Question 3715: Determinant
\n" ); document.write( "show that determinant
\n" ); document.write( "b+c,a,a,
\n" ); document.write( "b,c+a,b
\n" ); document.write( "c.c. a+b
\n" ); document.write( "=4abc
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #1648 by khwang(438)\"\" \"About 
You can put this solution on YOUR website!
|b+c a a|
\n" ); document.write( " |b c+a b|
\n" ); document.write( " |c c a+b|\r
\n" ); document.write( "\n" ); document.write( " = (a+b)(b+c)(c+a) + 2abc - ca(c+a) - bc(b+c) - ab(a+b)
\n" ); document.write( " = (b^2+ab+ca+bc)(c+a) + 2abc - ca(c+a) - bc(b+c) - ab(a+b)
\n" ); document.write( " = b^2c+abc+c^2a+bc^2 + ab^2+a^2b+ca^2+abc + 2abc - ca(c+a) - bc(b+c) - ab(a+b)
\n" ); document.write( " = (b^2c+ bc^2)+(c^2a+ ca^2) +(a^2b+ ab^2)+42abc - ca(c+a) - bc(b+c) - ab(a+b)
\n" ); document.write( " = 4abc.\r
\n" ); document.write( "\n" ); document.write( " Or let this determinant be f(a,b,c).\r
\n" ); document.write( "\n" ); document.write( " We see that f(0,b,c) = (b+c) (cb - bc) = 0
\n" ); document.write( " Similarly, f(a,0,c) = f(a,b,0) = 0
\n" ); document.write( "
\n" ); document.write( " Hence,abc is a divisor of f(a,b,c).
\n" ); document.write( " Since deg f(a,b,c) = 3, assume f(a,b,c) = k abc.\r
\n" ); document.write( "\n" ); document.write( " Set a=1,b=1,c =-1, we get
\n" ); document.write( " |0 1 1|
\n" ); document.write( " |1 0 1| = -1+(-1)-2 = -4 = k*1*1*(-1)= -k
\n" ); document.write( " |-1 -1 2|\r
\n" ); document.write( "\n" ); document.write( " So, k = 4 and f(a,b,c) = 4 abc.\r
\n" ); document.write( "\n" ); document.write( " I prefer the 2nd method and hope that you can understand it.
\n" ); document.write( " Kenny\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );