document.write( "Question 216624: 9x^2 + 16y^2 - 18x + 64y - 71 = 0
\n" );
document.write( "find the coordinates of the center.\r
\n" );
document.write( "\n" );
document.write( "a)(1,2)
\n" );
document.write( "b)(1,-2)
\n" );
document.write( "c)(-1,2)
\n" );
document.write( "d)(-2,1) \n" );
document.write( "
Algebra.Com's Answer #163563 by RAY100(1637)![]() ![]() ![]() You can put this solution on YOUR website! 9x^2 -18x + 16y^2 +64y = 71 \n" ); document.write( ". \n" ); document.write( "9(x^2 -2x ) + 16(y^2 +4y ) = 71,,,complete the squares remembering the last term = (2nd term / 2) squared,,,,,and add compensating amt to opposite side of eqn \n" ); document.write( ". \n" ); document.write( "9(x^2 -2x +1) +16(y^2 +4y+4) = 71 +(9*1) + (16*4) = 144 \n" ); document.write( ". \n" ); document.write( "9(x-1)^2 +16(y+2)^2 =144,,,, divide by 144 \n" ); document.write( ". \n" ); document.write( "(1/16){(x-1)^2} + (1/9){(y+2)^2} = 1 \n" ); document.write( ". \n" ); document.write( "{(x-1)^2} / 16 + {(y+2)^2} / 9 =1,,,,,,,which is eqn for ellipse \n" ); document.write( ". \n" ); document.write( "Center is at (1,-2),,,,,,,which is answer (b) \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " |