document.write( "Question 214983: I need help with sloving quadractic equations by factoring:
\n" ); document.write( "\"2x%5E2-3x-5=0\"
\n" ); document.write( "

Algebra.Com's Answer #162447 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
First, let's factor \"2x%5E2-3x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2-3x-5\", we can see that the first coefficient is \"2\", the second coefficient is \"-3\", and the last term is \"-5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"-5\" to get \"%282%29%28-5%29=-10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-10\" (the previous product) and add to the second coefficient \"-3\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-10\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-10\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,10\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-10\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-10\".\r
\n" ); document.write( "\n" ); document.write( "1*(-10) = -10
\n" ); document.write( "2*(-5) = -10
\n" ); document.write( "(-1)*(10) = -10
\n" ); document.write( "(-2)*(5) = -10\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-3\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-101+(-10)=-9
2-52+(-5)=-3
-110-1+10=9
-25-2+5=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"2\" and \"-5\" add to \"-3\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"2\" and \"-5\" both multiply to \"-10\" and add to \"-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-3x\" with \"2x-5x\". Remember, \"2\" and \"-5\" add to \"-3\". So this shows us that \"2x-5x=-3x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%282x-5x%29-5\" Replace the second term \"-3x\" with \"2x-5x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2%2B2x%29%2B%28-5x-5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%28x%2B1%29%2B%28-5x-5%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%28x%2B1%29-5%28x%2B1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-5%29%28x%2B1%29\" Combine like terms. Or factor out the common term \"x%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2-3x-5\" factors to \"%282x-5%29%28x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"2x%5E2-3x-5=%282x-5%29%28x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's use this factorization to solve \"2x%5E2-3x-5=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2-3x-5=0\" Start with the given equation\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-5%29%28x%2B1%29=0\" Factor the left side (using the factorization from above)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set each factor equal to zero:\r
\n" ); document.write( "\n" ); document.write( "\"2x-5=0\" or \"x%2B1=0\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=5%2F2\" or \"x=-1\" Now solve for x in each case\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the solutions are \"x=5%2F2\" or \"x=-1\"
\n" ); document.write( "
\n" );