document.write( "Question 213846: 64x^6 - 1\r
\n" );
document.write( "\n" );
document.write( "Im confused. \n" );
document.write( "
Algebra.Com's Answer #161555 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! Remember, if you saw: \n" ); document.write( "(a^2 - b^2) \n" ); document.write( "It's called \"difference of squares\" \n" ); document.write( "When you see this you should automatically know that the factors are: \n" ); document.write( "(a+b)(a-b) \n" ); document.write( ". \n" ); document.write( "Similarly: \n" ); document.write( "64x^6 - 1 \n" ); document.write( "Can be written as: \n" ); document.write( "(8x^3)^2 - (1)^2 \n" ); document.write( "Now, you have a \"difference of squares\" -- leading you to factor it as: \n" ); document.write( "(8x^3 + 1)(8x^3 - 1) \n" ); document.write( ". \n" ); document.write( "Wait, you're still not done. Notice, the above can be rewritten as: \n" ); document.write( "((2x)^3 + 1^3)((2x)^3 - 1^3) \n" ); document.write( "Now you have a \"sum of cubes\" and a \"difference of cubes... these are special factoring cases: \n" ); document.write( "((2x)^3 + 1^3) can be rewritten as: \n" ); document.write( "(2x + 1)(4x^2 - 2x + 1) \n" ); document.write( "and \n" ); document.write( "((2x)^3 - 1^3) can be rewritten as: \n" ); document.write( "(2x - 1)(4x^2 + 2x + 1) \n" ); document.write( ". \n" ); document.write( "This means instead of: \n" ); document.write( "((2x)^3 + 1^3)((2x)^3 - 1^3) \n" ); document.write( "we can rewrite as: \n" ); document.write( "(2x + 1)(4x^2 - 2x + 1)(2x - 1)(4x^2 + 2x + 1)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Reference, for further reading: \n" ); document.write( "http://www.purplemath.com/modules/specfact.htm \n" ); document.write( "http://www.purplemath.com/modules/specfact2.htm\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |