document.write( "Question 213709This question is from textbook Elementary & Intermediate
\n" ); document.write( ": Last digit. Find the last digit in 3^9999.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #161440 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Last digit. Find the last digit in 3^9999.
\n" ); document.write( "-----------------------
\n" ); document.write( "1st power last digit: 3
\n" ); document.write( "2nd power last digit: 9
\n" ); document.write( "3rd power last digit: 7
\n" ); document.write( "4rh power last digit: 1
\n" ); document.write( "5th power last digit: 3
\n" ); document.write( "-----------------------------
\n" ); document.write( "So there is a 5-step cycle
\n" ); document.write( "-------
\n" ); document.write( "9999/5 = 1999 with a remainder of 4
\n" ); document.write( "-------------
\n" ); document.write( "So 3^(9999) = 3^(5*1999 + 4)
\n" ); document.write( "= (3^5)^1999 * 3^4
\n" ); document.write( "= 3*3^4
\n" ); document.write( "= 3^5
\n" ); document.write( "= 3
\n" ); document.write( "=================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );