document.write( "Question 213709This question is from textbook Elementary & Intermediate
\n" );
document.write( ": Last digit. Find the last digit in 3^9999.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #161440 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Last digit. Find the last digit in 3^9999. \n" ); document.write( "----------------------- \n" ); document.write( "1st power last digit: 3 \n" ); document.write( "2nd power last digit: 9 \n" ); document.write( "3rd power last digit: 7 \n" ); document.write( "4rh power last digit: 1 \n" ); document.write( "5th power last digit: 3 \n" ); document.write( "----------------------------- \n" ); document.write( "So there is a 5-step cycle \n" ); document.write( "------- \n" ); document.write( "9999/5 = 1999 with a remainder of 4 \n" ); document.write( "------------- \n" ); document.write( "So 3^(9999) = 3^(5*1999 + 4) \n" ); document.write( "= (3^5)^1999 * 3^4 \n" ); document.write( "= 3*3^4 \n" ); document.write( "= 3^5 \n" ); document.write( "= 3 \n" ); document.write( "================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |