document.write( "Question 211486: Need to find he values of x and y that solves the system equation\r
\n" ); document.write( "\n" ); document.write( "-4x + 5y = -10
\n" ); document.write( "5x - 4y = 8
\n" ); document.write( "

Algebra.Com's Answer #159826 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%28-4x%2B5y=-10%2C5x-4y=8%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5%28-4x%2B5y%29=5%28-10%29\" Multiply the both sides of the first equation by 5.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x%2B25y=-50\" Distribute and multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4%285x-4y%29=4%288%29\" Multiply the both sides of the second equation by 4.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20x-16y=32\" Distribute and multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we have the new system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%28-20x%2B25y=-50%2C20x-16y=32%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28-20x%2B25y%29%2B%2820x-16y%29=%28-50%29%2B%2832%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28-20x%2B20x%29%2B%2825y%2B-16y%29=-50%2B32\" Group like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0x%2B9y=-18\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9y=-18\" Simplify.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-18%29%2F%289%29\" Divide both sides by \"9\" to isolate \"y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-2\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x%2B25y=-50\" Now go back to the first equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x%2B25%28-2%29=-50\" Plug in \"y=-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x-50=-50\" Multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x=-50%2B50\" Add \"50\" to both sides.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-20x=0\" Combine like terms on the right side.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%280%29%2F%28-20%29\" Divide both sides by \"-20\" to isolate \"x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=0\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the solutions are \"x=0\" and \"y=-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Which form the ordered pair .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the system is consistent and independent.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice when we graph the equations, we see that they intersect at . So this visually verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Graph of \"-4x%2B5y=-10\" (red) and \"5x-4y=8\" (green)
\n" ); document.write( "
\n" ); document.write( "
\n" );