document.write( "Question 211293: The width of a rectangle is five less than twice the length. What is the minimum area of such a rectangle? \n" ); document.write( "
Algebra.Com's Answer #159693 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
W=2L-5
\n" ); document.write( "SEEING AS THE WIDTH CAN'T BE A NEGATIVE VALUE THEN L MUST BE >2.5.
\n" ); document.write( "W>2*2.5-5
\n" ); document.write( "W>5-5
\n" ); document.write( "W>0
\n" ); document.write( "THEREFORE: THE LENGTH MUST BE > 2.5.
\n" ); document.write( "LET L=2.500000000001
\n" ); document.write( "W>2*2.50000000001-5
\n" ); document.write( "W>5.00000000002-5
\n" ); document.write( "W>.00000000002
\n" ); document.write( "AREA=LW
\n" ); document.write( "AREA=2.500000000002*.00000000002
\n" ); document.write( "AREA~.5*10^-11\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );