document.write( "Question 211198: Factor the following sum of 2 cubes, please x^3+64y^3.\r
\n" ); document.write( "\n" ); document.write( "Factor 4r^2+21r+5\r
\n" ); document.write( "\n" ); document.write( "Factor if possible 9-12b+4b^2\r
\n" ); document.write( "\n" ); document.write( "Factor completely 3s^2-10s+8\r
\n" ); document.write( "\n" ); document.write( "THANK YOU!!
\n" ); document.write( "

Algebra.Com's Answer #159565 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first two to get you going\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E3%2B64y%5E3\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%29%5E3%2B%284y%29%5E3\" Rewrite \"x%5E3\" as \"%28x%29%5E3\". Rewrite \"64y%5E3\" as \"%284y%29%5E3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B4y%29%28%28x%29%5E2-%28x%29%284y%29%2B%284y%29%5E2%29\" Now factor by using the sum of cubes formula. Remember the sum of cubes formula is \"A%5E3%2BB%5E3=%28A%2BB%29%28A%5E2-AB%2BB%5E2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B4y%29%28x%5E2-4xy%2B16y%5E2%29\" Multiply\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-----------------------------------\r
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E3%2B64y%5E3\" factors to \"%28x%2B4y%29%28x%5E2-4xy%2B16y%5E2%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E3%2B64y%5E3=%28x%2B4y%29%28x%5E2-4xy%2B16y%5E2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4r%5E2%2B21r%2B5\", we can see that the first coefficient is \"4\", the second coefficient is \"21\", and the last term is \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"5\" to get \"%284%29%285%29=20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"20\" (the previous product) and add to the second coefficient \"21\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"20\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"20\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"20\".\r
\n" ); document.write( "\n" ); document.write( "1*20 = 20
\n" ); document.write( "2*10 = 20
\n" ); document.write( "4*5 = 20
\n" ); document.write( "(-1)*(-20) = 20
\n" ); document.write( "(-2)*(-10) = 20
\n" ); document.write( "(-4)*(-5) = 20\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"21\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1201+20=21
2102+10=12
454+5=9
-1-20-1+(-20)=-21
-2-10-2+(-10)=-12
-4-5-4+(-5)=-9
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"1\" and \"20\" add to \"21\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"1\" and \"20\" both multiply to \"20\" and add to \"21\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"21r\" with \"r%2B20r\". Remember, \"1\" and \"20\" add to \"21\". So this shows us that \"r%2B20r=21r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4r%5E2%2Bhighlight%28r%2B20r%29%2B5\" Replace the second term \"21r\" with \"r%2B20r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284r%5E2%2Br%29%2B%2820r%2B5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%284r%2B1%29%2B%2820r%2B5%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%284r%2B1%29%2B5%284r%2B1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%2B5%29%284r%2B1%29\" Combine like terms. Or factor out the common term \"4r%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4r%5E2%2B21r%2B5\" factors to \"%28r%2B5%29%284r%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4r%5E2%2B21r%2B5=%28r%2B5%29%284r%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28r%2B5%29%284r%2B1%29\" to get \"4r%5E2%2B21r%2B5\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );