document.write( "Question 209635: There is a two-digit number such that the sum of its digits is 6, while the product of the digits is 1/3 the original number. Find this number. \n" ); document.write( "
Algebra.Com's Answer #158511 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
x+y=6
\n" ); document.write( "x=6-y
\n" ); document.write( "xy=(10x+y)/3
\n" ); document.write( "(6-y)y=(10[6-y]+y)/3
\n" ); document.write( "6y-y^2=(60-10y+y)/3
\n" ); document.write( "3(6y-y^2)=60-9y
\n" ); document.write( "18y-3y^2=60-9y
\n" ); document.write( "-3y^2+18y+9y-60=0
\n" ); document.write( "-3y^2+27y-60=0
\n" ); document.write( "-3(y^2-9y+20)=0
\n" ); document.write( "-3(y-4)(y-5)=0
\n" ); document.write( "y-4=0
\n" ); document.write( "y=4 ans.
\n" ); document.write( "x=6-4
\n" ); document.write( "x=2 ans (24)
\n" ); document.write( "y-5=0
\n" ); document.write( "y=5 ans.
\n" ); document.write( "x=6-5
\n" ); document.write( "x=1 ans (15)
\n" ); document.write( "
\n" );