document.write( "Question 29004: the diagonals of a rhombus are 10 and 24.\r
\n" ); document.write( "\n" ); document.write( "(a) find a side of the rhombus
\n" ); document.write( "(b) find the altitude of the rhombus
\n" ); document.write( "

Algebra.Com's Answer #15844 by josmiceli(19441)\"\" \"About 
You can put this solution on YOUR website!
A rhombus is really an isosceles triangle plus its reflection on its base.
\n" ); document.write( "The diagonals meet at right angles. They bisect eachother
\n" ); document.write( "sides are
\n" ); document.write( "\"12%5E2+%2B+5%5E2+=+s%5E2\"
\n" ); document.write( "\"144+%2B+25+%2B+s%5E2\"
\n" ); document.write( "\"169+=+s%5E2\"
\n" ); document.write( "\"s+=+13\"
\n" ); document.write( "draw the figure, dropping an altitude from the 24 diagonal- call it a
\n" ); document.write( "[1] \"x%5E2+%2B+a%5E2+=+13%5E2\"
\n" ); document.write( "[2] \"24%5E2+-+%2813+%2B+x%29%5E2+=+a%5E2\"
\n" ); document.write( "substitute a^2 in [2] for a^2 in [1]
\n" ); document.write( "\"x%5E2+%2B+24%5E2+-%2813+%2Bx%29%5E2+=+13%5E2\"
\n" ); document.write( "\"x%5E2+%2B+24%5E2+-+13%5E2+-26%2Ax+-x%5E2+=+13%5E2\"
\n" ); document.write( "cancel both x^2 and multiply both sides by -1
\n" ); document.write( "\"-24%5E2+%2B13%5E2+%2B+26%2Ax+=+-13%5E2\"
\n" ); document.write( "add +24^2 to both sides
\n" ); document.write( "subtract 13^2 from both sides
\n" ); document.write( "\"+26%2Ax+=+24%5E2+-+2%2A13%5E2\"
\n" ); document.write( "\"+26%2Ax+=+2%5E2%2A12%5E2+-+2%2A13%5E2\"
\n" ); document.write( "\"+13%2Ax+=+2%2A12%5E2+-+13%5E2\"
\n" ); document.write( "\"+13%2Ax+=+288+-+169\"
\n" ); document.write( "\"13%2Ax+=+119\"
\n" ); document.write( "\"x+=+9.15\"
\n" ); document.write( "now solve for a
\n" ); document.write( "\"a%5E2+=+13%5E2+-%289.15%29%5E2\"
\n" ); document.write( "\"a%5E2+=+169+-+83.72\"
\n" ); document.write( "\"a%5E2+=+85.27\"
\n" ); document.write( "\"a+=+9.23\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );