document.write( "Question 209290: write and simplify the rational expression that represents the probability of randomly hitting the unshaded region of the rectangle \r
\n" ); document.write( "\n" ); document.write( "out side rectangle dimensions l = (5x +4) w = (x+5)
\n" ); document.write( "inside shaded rectangle dimensions l = (x+5) w = (x+3)
\n" ); document.write( "

Algebra.Com's Answer #158238 by RAY100(1637)\"\" \"About 
You can put this solution on YOUR website!
for larger rectangle,,,l=(5x+4),,,,,w=(x+5),,Al=l*w=(5x+4)(x+5)
\n" ); document.write( ".
\n" ); document.write( "for smaller rectangle,,,l=(x+5),,,,,w=(x+3),,,,,As = lw=(x+3)(x+5)
\n" ); document.write( ".
\n" ); document.write( "To calculate the probability of hitting IN the smaller shaded rectangle
\n" ); document.write( ".
\n" ); document.write( "%=As/Al= {(x+3)(x+5)] / {5x+4)(x+5)} = (x+3)/(5x+5)
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "To calculate the probability in the unshaded area, use 1-p of shaded,,
\n" ); document.write( ".
\n" ); document.write( "or P in unshaded = 1-{(x+3)/(5x+5)}
\n" ); document.write( ".
\n" ); document.write( "To \"simplify\" further,,,LCD = (5x+5)
\n" ); document.write( ".
\n" ); document.write( "P(unshaded) = { (5x+5)-(x+3)} / (5x+5) = (4x +2) / (5x+5)
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( "
\n" );