document.write( "Question 207732: Dear sir or mam:
\n" ); document.write( "I am working on factoring trinomials completely
\n" ); document.write( "4p^2-16p-20
\n" ); document.write( "

Algebra.Com's Answer #157118 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
Jump to Answer\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4p%5E2-16p-20\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4%28p%5E2-4p-5%29\" Factor out the GCF \"4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"p%5E2-4p-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"p%5E2-4p-5\", we can see that the first coefficient is \"1\", the second coefficient is \"-4\", and the last term is \"-5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"-5\" to get \"%281%29%28-5%29=-5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-5\" (the previous product) and add to the second coefficient \"-4\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-5\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-5\":\r
\n" ); document.write( "\n" ); document.write( "1,5\r
\n" ); document.write( "\n" ); document.write( "-1,-5\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-5\".\r
\n" ); document.write( "\n" ); document.write( "1*(-5) = -5
\n" ); document.write( "(-1)*(5) = -5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-4\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-51+(-5)=-4
-15-1+5=4
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"1\" and \"-5\" add to \"-4\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"1\" and \"-5\" both multiply to \"-5\" and add to \"-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-4p\" with \"p-5p\". Remember, \"1\" and \"-5\" add to \"-4\". So this shows us that \"p-5p=-4p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%5E2%2Bhighlight%28p-5p%29-5\" Replace the second term \"-4p\" with \"p-5p\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28p%5E2%2Bp%29%2B%28-5p-5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%28p%2B1%29%2B%28-5p-5%29\" Factor out the GCF \"p\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"p%28p%2B1%29-5%28p%2B1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28p-5%29%28p%2B1%29\" Combine like terms. Or factor out the common term \"p%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4%28p%5E2-4p-5%29\" then factors further to \"4%28p-5%29%28p%2B1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4p%5E2-16p-20\" completely factors to \"4%28p-5%29%28p%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4p%5E2-16p-20=4%28p-5%29%28p%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"4%28p-5%29%28p%2B1%29\" to get \"4p%5E2-16p-20\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
Jump to Top
\n" ); document.write( "
\n" ); document.write( "
\n" );