document.write( "Question 207723This question is from textbook
\n" ); document.write( ": factoring trinomials completely
\n" ); document.write( "9x^2+18xy-7y^2
\n" ); document.write( "

Algebra.Com's Answer #157111 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
Jump to Answer\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2%2B18xy-7y%5E2\", we can see that the first coefficient is \"9\", the second coefficient is \"18\", and the last coefficient is \"-7\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last coefficient \"-7\" to get \"%289%29%28-7%29=-63\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-63\" (the previous product) and add to the second coefficient \"18\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-63\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-63\":\r
\n" ); document.write( "\n" ); document.write( "1,3,7,9,21,63\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-7,-9,-21,-63\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-63\".\r
\n" ); document.write( "\n" ); document.write( "1*(-63) = -63
\n" ); document.write( "3*(-21) = -63
\n" ); document.write( "7*(-9) = -63
\n" ); document.write( "(-1)*(63) = -63
\n" ); document.write( "(-3)*(21) = -63
\n" ); document.write( "(-7)*(9) = -63\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"18\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-631+(-63)=-62
3-213+(-21)=-18
7-97+(-9)=-2
-163-1+63=62
-321-3+21=18
-79-7+9=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-3\" and \"21\" add to \"18\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-3\" and \"21\" both multiply to \"-63\" and add to \"18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"18xy\" with \"-3xy%2B21xy\". Remember, \"-3\" and \"21\" add to \"18\". So this shows us that \"-3xy%2B21xy=18xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%28-3xy%2B21xy%29-7y%5E2\" Replace the second term \"18xy\" with \"-3xy%2B21xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2-3xy%29%2B%2821xy-7y%5E2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%283x-y%29%2B%2821xy-7y%5E2%29\" Factor out the GCF \"3x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%283x-y%29%2B7y%283x-y%29\" Factor out \"7y\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2B7y%29%283x-y%29\" Combine like terms. Or factor out the common term \"3x-y\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2%2B18xy-7y%5E2\" factors to \"%283x%2B7y%29%283x-y%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9x%5E2%2B18xy-7y%5E2=%283x%2B7y%29%283x-y%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283x%2B7y%29%283x-y%29\" to get \"9x%5E2%2B18xy-7y%5E2\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
Jump to Top
\n" ); document.write( "
\n" ); document.write( "
\n" );