document.write( "Question 207720This question is from textbook
\n" ); document.write( ": factoring trinomials completely
\n" ); document.write( "a^2+20a+100 (?)^2
\n" ); document.write( "

Algebra.Com's Answer #157109 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
Jump to Answer\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"a%5E2%2B20a%2B100\", we can see that the first coefficient is \"1\", the second coefficient is \"20\", and the last term is \"100\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"100\" to get \"%281%29%28100%29=100\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"100\" (the previous product) and add to the second coefficient \"20\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"100\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"100\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,10,20,25,50,100\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-10,-20,-25,-50,-100\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"100\".\r
\n" ); document.write( "\n" ); document.write( "1*100 = 100
\n" ); document.write( "2*50 = 100
\n" ); document.write( "4*25 = 100
\n" ); document.write( "5*20 = 100
\n" ); document.write( "10*10 = 100
\n" ); document.write( "(-1)*(-100) = 100
\n" ); document.write( "(-2)*(-50) = 100
\n" ); document.write( "(-4)*(-25) = 100
\n" ); document.write( "(-5)*(-20) = 100
\n" ); document.write( "(-10)*(-10) = 100\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"20\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11001+100=101
2502+50=52
4254+25=29
5205+20=25
101010+10=20
-1-100-1+(-100)=-101
-2-50-2+(-50)=-52
-4-25-4+(-25)=-29
-5-20-5+(-20)=-25
-10-10-10+(-10)=-20
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"10\" and \"10\" add to \"20\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"10\" and \"10\" both multiply to \"100\" and add to \"20\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"20a\" with \"10a%2B10a\". Remember, \"10\" and \"10\" add to \"20\". So this shows us that \"10a%2B10a=20a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%5E2%2Bhighlight%2810a%2B10a%29%2B100\" Replace the second term \"20a\" with \"10a%2B10a\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%5E2%2B10a%29%2B%2810a%2B100%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a%2B10%29%2B%2810a%2B100%29\" Factor out the GCF \"a\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"a%28a%2B10%29%2B10%28a%2B10%29\" Factor out \"10\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B10%29%28a%2B10%29\" Combine like terms. Or factor out the common term \"a%2B10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28a%2B10%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"a%5E2%2B20a%2B100\" factors to \"%28a%2B10%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"a%5E2%2B20a%2B100=%28a%2B10%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28a%2B10%29%5E2\" to get \"a%5E2%2B20a%2B100\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
Jump to Top
\n" ); document.write( "
\n" ); document.write( "
\n" );