Algebra.Com's Answer #154893 by Edwin McCravy(20056)  You can put this solution on YOUR website! Hi all, can anyone please show me how to; Find the equation of the line that contains points (2,1,-3) and (-1,4,1) \n" );
document.write( "Would really appreciate if someone could show me with steps and notes. \n" );
document.write( "Thanks, \n" );
document.write( "\r\n" );
document.write( "A line parallel to the vector v = ‹a,b,c› and passing through the\r\n" );
document.write( "point P( , , ) is represented by the\r\n" );
document.write( "parametric equations\r\n" );
document.write( "\r\n" );
document.write( " , , \r\n" );
document.write( "\r\n" );
document.write( "or as the symmetric equations:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "if none of a,b, or c are 0.\r\n" );
document.write( "\r\n" );
document.write( "Begin by using the points P(2,1,-3) and Q(-1,4,1) \r\n" );
document.write( "to find a direction vector for the line passing through \r\n" );
document.write( "P and Q, given by\r\n" );
document.write( " __\r\n" );
document.write( "v = PQ = ‹-1-(2),4-1,1-(-3)› = ‹-3,3,4›\r\n" );
document.write( "\r\n" );
document.write( "So we substitute in \r\n" );
document.write( "\r\n" );
document.write( " , , \r\n" );
document.write( "\r\n" );
document.write( "with ‹a,b,c› = ‹-3,3,4› and the point P( , , ) = P(2,1,-3)\r\n" );
document.write( "\r\n" );
document.write( " , , \r\n" );
document.write( "\r\n" );
document.write( "That's the parametric equations for the line.\r\n" );
document.write( "\r\n" );
document.write( "If you want the symmetric equation of the line, we\r\n" );
document.write( "substitute in\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Edwin \r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |