document.write( "Question 3448: 1 Eliminate, x,y between the following equations
\n" );
document.write( " x^2-y^2=px-qy, 4xy=qx+py , x^2+y^2=1\r
\n" );
document.write( "\n" );
document.write( "2. Eliminate, x,y,z between equations
\n" );
document.write( " y/z - z/y = a , z/x -x/z = b , x/y - y/x =c \n" );
document.write( "
Algebra.Com's Answer #1537 by khwang(438)![]() ![]() ![]() You can put this solution on YOUR website! Hi, somehow this is not an easy problem about elimination.\r \n" ); document.write( "\n" ); document.write( " This first one should use formulas in Trig., for otherwise, it is \n" ); document.write( " almost impossible to get the cancellation of x,y & z.\r \n" ); document.write( "\n" ); document.write( "1 Eliminate, x,y between the following equations \n" ); document.write( " x^2-y^2=px-qy...(1), 4xy=qx+py...(2) , x^2+y^2=1...(3). \n" ); document.write( " Sol: Since (3) is the unit circle x^2 + y^2=1, \n" ); document.write( " x = cos t, y = sin t for some t. \n" ); document.write( " Goto (1), we have cos^2 t- sin^2 t = (By double angle formula) \n" ); document.write( " cos 2t = p cos t - q sin t = sqrt(p^2+q^2) [p cos t/sqrt(p^2+q^2) - qsin t/sqrt(p^2+q^2)] \n" ); document.write( " = sqrt(p^2+q^2) cos (w + t)....(4) where cos w = p/sqrt(p^2+q^2) \n" ); document.write( " Goto (2), 4 cos t sin t = q cos t + p sin t \n" ); document.write( " = sqrt(p^2+q^2) [q cos t/sqrt(p^2+q^2) + p sin t/sqrt(p^2+q^2)] \n" ); document.write( " So, 2 sin 2t = sqrt(p^2+q^2) sin (w + t) ...(5) [Note cos w = p/sqrt(p^2+q^2)] \n" ); document.write( " \n" ); document.write( " (4)^2 + (5)^2 : cos^2 2t + 4 sin^2 2t = (p^2+q^2) [cos^2 (w + t) + sin^2 (w + t)] \n" ); document.write( " Simplify both sides: 1 + 3 sin^2 2t = p^2 + q^2 [we can get the same relation by using (1)^2+(2)^2 ] \n" ); document.write( " or sin^2 2t = (p^2 + q^2 - 1)/3 or 4 sin^2 t cos^2 t = (p^2 + q^2 - 1)/3\r \n" ); document.write( "\n" ); document.write( " Since sin^2 2t = 4 (sin^2 t/ cos^2 t) cos^4 t = 4 tan^2 t /sec ^4 t = 4 tan^2 t /(1+tan^2 t )^2, \n" ); document.write( " we have tan^2 t /(1+tan^2 t )^2 = (p^2 + q^2 - 1)/12 or \n" ); document.write( " [(1+tan^2 t )^2/tan^2 t] = 12/(p^2 + q^2 - 1) or \n" ); document.write( " So, (1+tan^2 t )/tan t = sqrt[12/(p^2 + q^2 - 1)] or \n" ); document.write( " tan t + 1/tan t = sqrt[12/(p^2 + q^2 - 1)] ...(6) \n" ); document.write( " Let r = sqrt[12/(p^2 + q^2 - 1)] = 2sqrt[3/(p^2 + q^2 - 1)] \n" ); document.write( " Convert (6) to the quuadratic equation u^2 -ru + 1 = 0 , where u = tan t, \n" ); document.write( " by quadratic formula u = tan t = [r + sqrt(r^2-4)]/2 [or (r - sqrt(r^2-4))/2] \n" ); document.write( " Hence, tan t = [r+sqrt(r^2-4)]/2 = u ...(7) \n" ); document.write( " Consider (5)/(4): 2 tan 2t = tan (w+t), so \n" ); document.write( " 4 tan t/(1 - tan^2 t) = (tan w + tan t) / (1 - tan w tan t) \n" ); document.write( " Cancelling the denominator and simplify: \n" ); document.write( " tan^3 t - 3 tan w tan ^2 t + 3 tan t - tan w = 0 ...(8) \n" ); document.write( " Replace tan t by (7) in (8) , we obtain \n" ); document.write( " [Note tan w = q/p, and so tan t = y/x , x, y disappear.] \n" ); document.write( " \n" ); document.write( " [r+sqrt(r^2-4)]^3/8 - 3 q/p^2/4 + 3[r+sqrt(r^2-4)]/2 - q/p =0.\r \n" ); document.write( "\n" ); document.write( " {Recall : r = 2sqrt[3/(p^2 + q^2 - 1)] ,r^2 = 12/(p^2 + q^2 - 1)} \n" ); document.write( " {You can try to simplify it. But, it seems that there is no simple algebraic \n" ); document.write( " form of for it. In other words, it is in complicated and ugly form.]]\r \n" ); document.write( "\n" ); document.write( " 2. Eliminate, x,y,z between equations \n" ); document.write( " y/z - z/y = a , z/x -x/z = b , x/y - y/x =c.\r \n" ); document.write( "\n" ); document.write( " Let y/z = u, z/x = w, x/y = wu. \n" ); document.write( " So, u -1/u = a, \n" ); document.write( " or u^2 - au -1 =0 \n" ); document.write( " By quadratic formula u = [a+ sqrt(a^2+4)]/2 = y/z...(1) \n" ); document.write( " [if u=y/z >0, otherwise u= (a- sqrt(a^2+4))/2 ] \n" ); document.write( " \n" ); document.write( " Similary, w = [b+ sqrt(b^2+4)]/2 = z/x...(2) [if w=z/x >0] \n" ); document.write( " and x/y = [c + sqrt(c^2+4)]/2 ...(3) [if x/y >0] \n" ); document.write( " \n" ); document.write( " Since y/z * z/x * x/y = 1, we obtain \n" ); document.write( " [a + sqrt(a^2+4)] [b + sqrt(b^2+4)][c+ sqrt(c^2+4)]/8 = 1, \n" ); document.write( " [a + sqrt(a^2+4)] [b + sqrt(b^2+4)][c+ sqrt(c^2+4)] = 8.\r \n" ); document.write( "\n" ); document.write( " More precisely, \n" ); document.write( " Case(i) y/z, z/x > 0 \n" ); document.write( " [a + sqrt(a^2+4)] [b + sqrt(b^2+4)][c+ sqrt(c^2+4)] = 8. \n" ); document.write( " Case(ii) y/z > 0, z/x < 0 \n" ); document.write( " [a + sqrt(a^2+4)] [b - sqrt(b^2+4)][c- sqrt(c^2+4)] = 8. \n" ); document.write( " Case(ii) y/z < 0, z/x > 0 \n" ); document.write( " [a - sqrt(a^2+4)] [b + sqrt(b^2+4)][c- sqrt(c^2+4)] = 8. \n" ); document.write( " Case(iii) y/z < 0, z/x < 0 \n" ); document.write( " [a - sqrt(a^2+4)] [b - sqrt(b^2+4)][c+ sqrt(c^2+4)] = 8. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Try to read carefully about every step. \n" ); document.write( " Good luck !\r \n" ); document.write( "\n" ); document.write( " Kenny \n" ); document.write( " |