document.write( "Question 3449: z is an element of C such that [(z)/(z-i)] is real.How can I show that z is imaginary. \n" ); document.write( "
Algebra.Com's Answer #1527 by khwang(438)\"\" \"About 
You can put this solution on YOUR website!
Let z = a+bi where a,b are real.
\n" ); document.write( " If z/(z-i) = c for some real c.
\n" ); document.write( " then a + b i = c(z-i)
\n" ); document.write( " or a + b i = c(a+(b-1)i)
\n" ); document.write( " or a + b i = ca + c(b-1)i
\n" ); document.write( " So, a=ca and b = c(b-1)\r
\n" ); document.write( "\n" ); document.write( " a=ca implies a(c-1) = 0 Hence, a=0 or c =1\r
\n" ); document.write( "\n" ); document.write( " But, if c = 1, then b = c(b-1) implies b = b-1 impossible.\r
\n" ); document.write( "\n" ); document.write( " Hence, we see that a = 0, z = bi
\n" ); document.write( " If b = 0, then z = 0 and c = 0
\n" ); document.write( " and so z is imaginary or zero.\r
\n" ); document.write( "\n" ); document.write( " Kenny
\n" ); document.write( "
\n" );