document.write( "Question 202316: find (a)the directrix, (b)the focus, and (c)the roots of the parabola
\n" ); document.write( "y = x^2 - 5x + 4
\n" ); document.write( "

Algebra.Com's Answer #152693 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
find (a)the directrix, (b)the focus, and (c)the roots of the parabola
\n" ); document.write( "\"y+=+x%5E2+-+5x+%2B+4\"
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We have to get it in the form \r\n" );
document.write( "\r\n" );
document.write( "\"%28x-h%29%5E2=4p%28y-k%29\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\"y+=+x%5E2+-+5x+%2B+4\"\r\n" );
document.write( "\r\n" );
document.write( "Swap sides:\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E2+-+5x+%2B+4+=+y\"\r\n" );
document.write( "\r\n" );
document.write( "Add -4 to both sides the get the x-terms alone on the left.\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E2+-+5x=y-4\"\r\n" );
document.write( "\r\n" );
document.write( "Multiply the coefficient of x, which is \"-5\" by \"1%2F2\"\r\n" );
document.write( "This gives \"-5%2F2\".  Now we square \"-5%2F2\" and get \"%22%22%2B25%2F4\"\r\n" );
document.write( "We add \"%22%22%2B25%2F4\" to both sides:\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E2+-+5x%2B25%2F4=y-4%2B25%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "Factor the left side, and write the \"-4\" as \"-16%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-5%2F2%29%28x-5%2F2%29=y-16%2F4%2B25%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "Write the left side as the square of a binomial,\r\n" );
document.write( "combine the fractions on the right:\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-5%2F2%29%5E2=y%2B9%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "Now so that equation will look like this:\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-h%29%5E2=4p%28y-k%29\"\r\n" );
document.write( "\r\n" );
document.write( "we put the right side in parentheses and put a 1\r\n" );
document.write( "coefficient before the parentheses, like this:\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-5%2F2%29%5E2=1%28y%2B9%2F4%29\"\r\n" );
document.write( "\r\n" );
document.write( "Now we can compare it to the equation:\r\n" );
document.write( "\r\n" );
document.write( "\"%28x-h%29%5E2=4p%28y-k%29\"\r\n" );
document.write( "\r\n" );
document.write( "and get \"-h=-5%2F2\", so \"h=5%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "\"-k=%22%22%2B9%2F4\", so \"k=-9%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "So the vertex is (\"h\",\"k\") or (\"5%2F2\",\"-9%2F4\")\r\n" );
document.write( "\r\n" );
document.write( "And \"4p=1\", so \"p=1%2F4\"\r\n" );
document.write( "\r\n" );
document.write( "Now let's begin by plotting the vertex, which is (\"5%2F2\",\"3%2F2\"),\r\n" );
document.write( "\r\n" );
document.write( "But for plotting purposes, mixed numbers are better\r\n" );
document.write( "than improper fractions, so for plotting vertex (\"5%2F2\",\"-9%2F4\"),\r\n" );
document.write( "we rewrite it as (\"2%261%2F2\",\"-2%261%2F4\")\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we will find the x-intercepts, by settng \"y=0\"\r\n" );
document.write( "in the original equation, and finding the \"roots\":\r\n" );
document.write( "\r\n" );
document.write( "\"y+=+x%5E2+-+5x+%2B+4\"\r\n" );
document.write( "\"0+=+x%5E2+-+5x+%2B+4\"\r\n" );
document.write( "\"0+=+%28x-1%29%28x-4%29\"\r\n" );
document.write( "\"x-1=0\", so \"x=1\"\r\n" );
document.write( "\"x-4=0\", so \"x=4\"\r\n" );
document.write( "\r\n" );
document.write( "So the x-intecepts are (1,0) and (4,0) \r\n" );
document.write( "\r\n" );
document.write( "So we plot those:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "and sketch in the parabola:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now the focus is p units from the vertex INSIDE\r\n" );
document.write( "the parabola, so since the parabola opens upward,\r\n" );
document.write( "we add P or \"1%2F4\" to the y-coordinate of the\r\n" );
document.write( "vertex. Since the vertx is (\"5%2F2\",\"-9%2F4\"),\r\n" );
document.write( "the focus = (\"5%2F2\",\"-9%2F4%2B1%2F4\") = (\"5%2F2\",\"-8%2F4\") \r\n" );
document.write( "= (\"5%2F2\",\"-2\")\r\n" );
document.write( "\r\n" );
document.write( "So we draw that point:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now the directrix is a line OUTSIDE the parabola which is\r\n" );
document.write( "also p-units, or \"1%2F4\" from the vertex.\r\n" );
document.write( "\r\n" );
document.write( "Since the y-coordinate of the vertex is \"-9%2F4\" we want\r\n" );
document.write( "the directrix to be \"1%2F4\" unit below the vertex, so we\r\n" );
document.write( "subtract \"-9%2F4-1%2F4=-10%2F4=-5%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "So the directrix is the horizontal line whose equation is \r\n" );
document.write( "\r\n" );
document.write( "\"y=-5%2F2\".  I'll draw it in in green:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So the focus is the POINT (\"5%2F2\",\"-2\") and the \r\n" );
document.write( "\r\n" );
document.write( "directrix is the LINE \"y=-5%2F2\"\r\n" );
document.write( "\r\n" );
document.write( "The \"roots\" are really the y-coordinates of the \r\n" );
document.write( "x-intercepts or 1 and 4.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );