document.write( "Question 202197: Factor the following polynomial completely.\r
\n" ); document.write( "\n" ); document.write( "20x2 + 22xy + 6y2 =
\n" ); document.write( "

Algebra.Com's Answer #152454 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
Jump to Answer\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20x%5E2%2B22xy%2B6y%5E2\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2%2810x%5E2%2B11xy%2B3y%5E2%29\" Factor out the GCF \"2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"10x%5E2%2B11xy%2B3y%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"10x%5E2%2B11xy%2B3y%5E2\", we can see that the first coefficient is \"10\", the second coefficient is \"11\", and the last coefficient is \"3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"10\" by the last coefficient \"3\" to get \"%2810%29%283%29=30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"30\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"30\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"30\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,30\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-30\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"30\".\r
\n" ); document.write( "\n" ); document.write( "1*30 = 30
\n" ); document.write( "2*15 = 30
\n" ); document.write( "3*10 = 30
\n" ); document.write( "5*6 = 30
\n" ); document.write( "(-1)*(-30) = 30
\n" ); document.write( "(-2)*(-15) = 30
\n" ); document.write( "(-3)*(-10) = 30
\n" ); document.write( "(-5)*(-6) = 30\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1301+30=31
2152+15=17
3103+10=13
565+6=11
-1-30-1+(-30)=-31
-2-15-2+(-15)=-17
-3-10-3+(-10)=-13
-5-6-5+(-6)=-11
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"5\" and \"6\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"5\" and \"6\" both multiply to \"30\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11xy\" with \"5xy%2B6xy\". Remember, \"5\" and \"6\" add to \"11\". So this shows us that \"5xy%2B6xy=11xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"10x%5E2%2Bhighlight%285xy%2B6xy%29%2B3y%5E2\" Replace the second term \"11xy\" with \"5xy%2B6xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2810x%5E2%2B5xy%29%2B%286xy%2B3y%5E2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%282x%2By%29%2B%286xy%2B3y%5E2%29\" Factor out the GCF \"5x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5x%282x%2By%29%2B3y%282x%2By%29\" Factor out \"3y\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285x%2B3y%29%282x%2By%29\" Combine like terms. Or factor out the common term \"2x%2By\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2%2810x%5E2%2B11xy%2B3y%5E2%29\" then factors further to \"2%285x%2B3y%29%282x%2By%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"20x%5E2%2B22xy%2B6y%5E2\" completely factors to \"2%285x%2B3y%29%282x%2By%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"20x%5E2%2B22xy%2B6y%5E2=2%285x%2B3y%29%282x%2By%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"2%285x%2B3y%29%282x%2By%29\" to get \"20x%5E2%2B22xy%2B6y%5E2\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
Jump to Top
\n" ); document.write( "
\n" ); document.write( "
\n" );