document.write( "Question 201887: Find the periodic payment that will render the sum.\r
\n" );
document.write( "\n" );
document.write( "S = $26,000, interest is 18% compounded monthly, payments made at the end of each month for 3 Years
\n" );
document.write( "A) $549.96
\n" );
document.write( "B) $7278.02
\n" );
document.write( "C) $692.62
\n" );
document.write( "D) $576.30 \n" );
document.write( "
Algebra.Com's Answer #152198 by Theo(13342)![]() ![]() You can put this solution on YOUR website! payment is $549.96 per month which is answer (A). \n" ); document.write( "What it appears you are looking for is the annuity for a future amount. \n" ); document.write( "The future amount is $26,000 \n" ); document.write( "The formula used to get this amount would be: \n" ); document.write( " \n" ); document.write( "PMT(FV) means payment for a future amount which is also called future value. \n" ); document.write( "FV means future value \n" ); document.write( "i = interest rate per time period \n" ); document.write( "n = number of time periods \n" ); document.write( "In this problem the time period was in months because the payments were made monthly and the interest rate was compounded monthly. \n" ); document.write( "the annual interest rate was divided by 12 to get the monthly interest rate. \n" ); document.write( "please note that interest rate = % interest / 100%. since the annual % interest was 18%, the annual interest rate was .18. In the formula, the interest rate is used, not the % interest. \n" ); document.write( "for this problem, the monthly interest became .18/12 = .015 which is the same as 1.5% expressed as a rate. \n" ); document.write( "the number of time periods was multiplied by 12 to get the number of time periods expressed in months. \n" ); document.write( "for this problem the number of timer periods became 3 * 12 = 36. \n" ); document.write( "after taking care of all that, just plug the numbers into the formula and calculate the result. \n" ); document.write( " \n" ); document.write( " |