document.write( "Question 201166: Part 1:\r
\n" );
document.write( "\n" );
document.write( "Enter the dimensions of a rectangular box with a volume of 50x^3 - 3 - 2x + 75x^2.
\n" );
document.write( "____?\r
\n" );
document.write( "\n" );
document.write( "Part 2\r
\n" );
document.write( "\n" );
document.write( "A rectangular box has a volume of 50x^3 -3 - 2x- 75x^2. In order for such a box to actually exist, the numerical value of x must be greater than____?
\n" );
document.write( "(Use factorization from part 1 to solve.)\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #151380 by RAY100(1637) ![]() You can put this solution on YOUR website! Vol = 50x^3 -2x +75x^2 -3 \n" ); document.write( ". \n" ); document.write( "looking for V = L * W * H \n" ); document.write( ". \n" ); document.write( "factor original eqn \n" ); document.write( ". \n" ); document.write( "2x(25x^2 -1) +3(25x^2-1) \n" ); document.write( ". \n" ); document.write( "(2x+3)( 25x^2 -1) \n" ); document.write( ". \n" ); document.write( "(2x+3) (5x+1)(5x-1),,,,,sides of box \n" ); document.write( ". \n" ); document.write( "2x+3 =0,,,,,x=-1.5 \n" ); document.write( ". \n" ); document.write( "5x +1 = 0,,,,,x= -1/5 \n" ); document.write( ". \n" ); document.write( "5x-1=0,,,,,,x= 1/5 \n" ); document.write( ". \n" ); document.write( "Smallest zero is (-1.5),, therefore x> -1.5 \n" ); document.write( " |