document.write( "Question 27740: Factor:\r
\n" );
document.write( "\n" );
document.write( "How do I do this ?\r
\n" );
document.write( "\n" );
document.write( "Factor:
\n" );
document.write( "y^3+125\r
\n" );
document.write( "\n" );
document.write( "Thanks for your help and time, it's greatly appreciated ! \n" );
document.write( "
Algebra.Com's Answer #15110 by sdmmadam@yahoo.com(530)![]() ![]() ![]() You can put this solution on YOUR website! Factor: \n" ); document.write( "How do I do this ? \n" ); document.write( "Factor: \n" ); document.write( "y^3+125\r \n" ); document.write( "\n" ); document.write( "y^3+125 \n" ); document.write( "=(y)^3 + (5)^3 \n" ); document.write( "=(y+5)[(y)^2 - (y)(5) + (5)^2] \n" ); document.write( "(using formula:=(a)^3 + (b)^3 =(a+b)[(a)^2 - (a)X(b) + (b)^2] \n" ); document.write( "In this problem a = y and b= 5) \n" ); document.write( "=(y+5)(y^2-5y+25) \n" ); document.write( "Note: The formula [(a)^3 + (b)^3] =(a+b)[(a)^2 - (a)(b) + (b)^2] is derived from the formula (a+b)^3 = a^3 +b^3 +3ab(a+b) \n" ); document.write( "Now therefore we have a^3 +b^3 +3ab(a+b)= (a+b)^3 \n" ); document.write( "which implies \n" ); document.write( "[a^3 +b^3] = (a+b)^3 - 3ab(a+b) (changing side then changing sign) \n" ); document.write( "= p^3 - 3abp where p = (a+b) \n" ); document.write( "= p[(p)^2 - 3ab] \n" ); document.write( "=(a+b)[(a^2+b^2+2ab)-3ab] \n" ); document.write( "=(a+b)[a^2+b^2+(2ab-3ab)] (by additive associativity) \n" ); document.write( "=(a+b)[a^2+b^2+ -ab] \n" ); document.write( "= (a+b)[(a)^2 - ab + (b)^2] \r \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |