document.write( "Question 199856: (s\") + 6s' - 9s = t^2
\n" ); document.write( " where s\" is like
\n" ); document.write( " d^2x/dt^2
\n" ); document.write( " (s\") + 6s' - 9s = t^2
\n" ); document.write( " where s\" is like
\n" ); document.write( " d^2x/dt^2
\n" ); document.write( "

Algebra.Com's Answer #150236 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
This is a 2nd order linear differential equation. So here are the steps to finding the general solution:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Step 1) Find the complementary solution \"s%5Bc%5D\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solve the characteristic equation \"r%5E2%2B6r-9=0\" to get \"r=-3%2B3%2Asqrt%282%29\" or \"r=-3-3%2Asqrt%282%29\". Since we have two unique real roots, this means that the complementary solution is \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: recall, if you have two real roots \"r%5B1%5D\" and \"r%5B2%5D\" of the characteristic equation, then the complementary solution is \"s%5Bc%5D=c%5B1%5D%2Ae%5E%28r%5B1%5D%2Ax%29%2Bc%5B2%5D%2Ae%5E%28r%5B2%5D%2Ax%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Step 2) Find the operator that annihilates the right hand side \"t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The operator \"D%5E3\" annihilates \"1\", \"t\", and \"t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We can rewrite the given differential equation as: \"D%5E2%2B6D-9=t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "When we apply the operator \"D%5E3\" to both sides, we get: \"D%5E3%28D%5E2%2B6D-9%29=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Because \"D%5E3\" annihilates \"1\", \"t\", and \"t%5E2\", we know that the particular solution \"s%5Bp%5D\" is\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s%5Bp%5D=A%2BBt%2BCt%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Derive \"s%5Bp%5D\" to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Derive again to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now plug this information into the original differential equation to get\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2C%2B6%28B%2B2Ct%29-9%28A%2BBt%2BCt%5E2%29=t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2C%2B6B%2B12Ct-9A-9Bt-9Ct%5E2=t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-9Ct%5E2%2B%2812Ct-9Bt%29%2B%28-9A%2B6B%2B2C%29=t%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So this means that \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-9C=1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12C-9B=0\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-9A%2B6B%2B2C=0\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solve the system above to get \"A=-10%2F81\", \"B=-4%2F27\", and \"C=-1%2F9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the particular solution is \"s%5Bp%5D=-10%2F81-%284%2F27%29x-%281%2F9%29x%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the general solution is \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"s=s%5Bc%5D%2Bs%5Bp%5D\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in \"s%5Bc%5D\" and \"s%5Bp%5D\" (what we found earlier) to get:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So that is the final answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: there is another way to solve this problem, but it involves nasty integrals. Even though there's a lot going on here, the solution method is really straightforward.
\n" ); document.write( "
\n" ); document.write( "
\n" );