document.write( "Question 199588: can you please graph the hyerbola and explain how you did it\r
\n" ); document.write( "\n" ); document.write( "(x+2)^2/4 - (y-4)^2/25=1\r
\n" ); document.write( "\n" ); document.write( "thank you!!
\n" ); document.write( "

Algebra.Com's Answer #150205 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
can you please graph the hyerbola and explain how you did it
\n" ); document.write( "\"%28x%2B2%29%5E2%2F4+-+%28y-4%29%5E2%2F25=1\"
\n" ); document.write( "thank you!!\r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "\"%28%28x-h%29%5E2%29%2Fa%5E2+-+%28%28y-k%29%5E2%29%2Fb%5E2+=+1\"\r\n" );
document.write( " \r\n" );
document.write( "\"h+=+-2\", \"k=4\", \r\n" );
document.write( " \r\n" );
document.write( "\"a%5E2=4\", so \"a=2\"\r\n" );
document.write( " \r\n" );
document.write( "\"b%5E2=25\", so \"b=5\"\r\n" );
document.write( " \r\n" );
document.write( "The center (h,k) = (-2,4)\r\n" );
document.write( " \r\n" );
document.write( "We start out plotting the center C(h,k) = C(-2,4)\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the left semi-transverse axis,\r\n" );
document.write( "which is a segment a=2 units long horizontally \r\n" );
document.write( "left from the center.  This semi-transverse\r\n" );
document.write( "axis ends up at one of the two vertices (-4,4).\r\n" );
document.write( "We'll call it V1(-4,4):\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the right semi-transverse axis,\r\n" );
document.write( "which is a segment a=5 units long horizontally \r\n" );
document.write( "right from the center. This other semi-transverse\r\n" );
document.write( "axis ends up at the other vertex (0,4).\r\n" );
document.write( "We'll call it V2(0,4):\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "That's the whole transverse (\"trans\"=\"across\",\r\n" );
document.write( "\"verse\"=\"vertices\", the line going across from\r\n" );
document.write( "one vertex to the other. It is 2a in length,\r\n" );
document.write( "so the length of the transverse axis is 2a=2(2)=4\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the upper semi-conjugate axis,\r\n" );
document.write( "which is a segment b=5 units long verically \r\n" );
document.write( "upward from the center.  This semi-conjugate\r\n" );
document.write( "axis ends up at (-2,9).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the lower semi-conjugate axis,\r\n" );
document.write( "which is a segment b=8 units long verically \r\n" );
document.write( "downward from the center.  This semi-conjugate\r\n" );
document.write( "axis ends up at (-2,-1). \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "That's the complete conjugate axis. It is 2b in length,\r\n" );
document.write( "so the length of the transverse axis is 2b=2(5)=10\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the defining rectangle which has the\r\n" );
document.write( "ends of the transverse and conjugate axes as midpoints\r\n" );
document.write( "of its sides:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw and extend the two diagonals of this defining\r\n" );
document.write( "rectangle:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we can sketch in the hyperbola:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );