can you please graph the hyerbola and explain how you did it
\n" );
document.write( "
\n" );
document.write( "thank you!!\r
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "
,
, \r\n" );
document.write( " \r\n" );
document.write( "
, so
\r\n" );
document.write( " \r\n" );
document.write( "
, so
\r\n" );
document.write( " \r\n" );
document.write( "The center (h,k) = (-2,4)\r\n" );
document.write( " \r\n" );
document.write( "We start out plotting the center C(h,k) = C(-2,4)\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the left semi-transverse axis,\r\n" );
document.write( "which is a segment a=2 units long horizontally \r\n" );
document.write( "left from the center. This semi-transverse\r\n" );
document.write( "axis ends up at one of the two vertices (-4,4).\r\n" );
document.write( "We'll call it V1(-4,4):\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the right semi-transverse axis,\r\n" );
document.write( "which is a segment a=5 units long horizontally \r\n" );
document.write( "right from the center. This other semi-transverse\r\n" );
document.write( "axis ends up at the other vertex (0,4).\r\n" );
document.write( "We'll call it V2(0,4):\r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "That's the whole transverse (\"trans\"=\"across\",\r\n" );
document.write( "\"verse\"=\"vertices\", the line going across from\r\n" );
document.write( "one vertex to the other. It is 2a in length,\r\n" );
document.write( "so the length of the transverse axis is 2a=2(2)=4\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the upper semi-conjugate axis,\r\n" );
document.write( "which is a segment b=5 units long verically \r\n" );
document.write( "upward from the center. This semi-conjugate\r\n" );
document.write( "axis ends up at (-2,9).\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the lower semi-conjugate axis,\r\n" );
document.write( "which is a segment b=8 units long verically \r\n" );
document.write( "downward from the center. This semi-conjugate\r\n" );
document.write( "axis ends up at (-2,-1). \r\n" );
document.write( " \r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "That's the complete conjugate axis. It is 2b in length,\r\n" );
document.write( "so the length of the transverse axis is 2b=2(5)=10\r\n" );
document.write( " \r\n" );
document.write( "Next we draw the defining rectangle which has the\r\n" );
document.write( "ends of the transverse and conjugate axes as midpoints\r\n" );
document.write( "of its sides:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "Next we draw and extend the two diagonals of this defining\r\n" );
document.write( "rectangle:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we can sketch in the hyperbola:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "Edwin
\n" );
document.write( "