document.write( "Question 199751: I need to use factoring to solve an equation. I know the procedure but need to review one thing:
\n" ); document.write( "Solve: -2x^2 + 13x -21 =0
\n" ); document.write( "I know this becomes:
\n" ); document.write( " 2x^2 -13x +21 + 0\r
\n" ); document.write( "\n" ); document.write( " (2x ) (x )
\n" ); document.write( "what I need is what goes in each parenthenes. the correct products of -21 should equal the sum of -13. I only see 21 x -1, -21 x 1, 7 x -3, and -7 x 3. But none of these add up to -13.
\n" ); document.write( "

Algebra.Com's Answer #150140 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Here's one way you can factor \"+2x%5E2+-13x+%2B21\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2-13x%2B21\", we can see that the first coefficient is \"2\", the second coefficient is \"-13\", and the last term is \"21\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"21\" to get \"%282%29%2821%29=42\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"42\" (the previous product) and add to the second coefficient \"-13\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"42\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"42\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,7,14,21,42\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-7,-14,-21,-42\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"42\".\r
\n" ); document.write( "\n" ); document.write( "1*42
\n" ); document.write( "2*21
\n" ); document.write( "3*14
\n" ); document.write( "6*7
\n" ); document.write( "(-1)*(-42)
\n" ); document.write( "(-2)*(-21)
\n" ); document.write( "(-3)*(-14)
\n" ); document.write( "(-6)*(-7)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-13\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1421+42=43
2212+21=23
3143+14=17
676+7=13
-1-42-1+(-42)=-43
-2-21-2+(-21)=-23
-3-14-3+(-14)=-17
-6-7-6+(-7)=-13
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-6\" and \"-7\" add to \"-13\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-6\" and \"-7\" both multiply to \"42\" and add to \"-13\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-13x\" with \"-6x-7x\". Remember, \"-6\" and \"-7\" add to \"-13\". So this shows us that \"-6x-7x=-13x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%28-6x-7x%29%2B21\" Replace the second term \"-13x\" with \"-6x-7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2-6x%29%2B%28-7x%2B21%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%28x-3%29%2B%28-7x%2B21%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%28x-3%29-7%28x-3%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-7%29%28x-3%29\" Combine like terms. Or factor out the common term \"x-3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2-13x%2B21\" factors to \"%282x-7%29%28x-3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%282x-7%29%28x-3%29\" to get \"2x%5E2-13x%2B21\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you have any questions, email me at jim_thompson5910@hotmail.com.
\n" ); document.write( "Check out my website if you are interested in tutoring.
\n" ); document.write( "
\n" );