document.write( "Question 199466: Hi!\r
\n" ); document.write( "\n" ); document.write( "A quadratic function of f is given.
\n" ); document.write( "f (x) = 3x^2 + 6x - 7 \r
\n" ); document.write( "\n" ); document.write( "Find its vertex and its x- and y-intercept(s)\r
\n" ); document.write( "\n" ); document.write( "thanks for the homework help!
\n" ); document.write( "

Algebra.Com's Answer #149883 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
Manipulate your equation into the \"vertex form\":
\n" ); document.write( "y= a(x-h)^2+k
\n" ); document.write( "where
\n" ); document.write( "(h,k) is the vertex
\n" ); document.write( ".
\n" ); document.write( "f(x) = 3x^2 + 6x - 7
\n" ); document.write( "f(x) = (3x^2 + 6x) - 7
\n" ); document.write( "f(x) = 3(x^2 + 2x) - 7
\n" ); document.write( "Complete the square:
\n" ); document.write( "f(x) = 3(x^2 + 2x + 1) - 7 - 3
\n" ); document.write( "f(x) = 3(x+1)^2 - 10
\n" ); document.write( ".
\n" ); document.write( "Therefore, the vertex is:
\n" ); document.write( "(h,k) = (-1, -10)
\n" ); document.write( ".
\n" ); document.write( "To find the y-intercepts, set x=0 and solve for f(x):
\n" ); document.write( "f(x) = 3x^2 + 6x - 7
\n" ); document.write( "f(x) = 3(0^2) + 6(0) - 7
\n" ); document.write( "f(x) = - 7
\n" ); document.write( "y-intercept is (0, -7)
\n" ); document.write( ".
\n" ); document.write( "To find x-intercepts, set f(x)=0 and solve for x:
\n" ); document.write( "0 = 3x^2 + 6x - 7
\n" ); document.write( "Using the quadratic equation, we get:
\n" ); document.write( "x = {0.826, -2.826}
\n" ); document.write( "x-intercepts are at:
\n" ); document.write( "(-2.826,0) and (0.826,0)
\n" ); document.write( ".
\n" ); document.write( "Details of quadratic follows:
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"3x%5E2%2B6x%2B-7+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%286%29%5E2-4%2A3%2A-7=120\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=120 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-6%2B-sqrt%28+120+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%286%29%2Bsqrt%28+120+%29%29%2F2%5C3+=+0.825741858350554\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%286%29-sqrt%28+120+%29%29%2F2%5C3+=+-2.82574185835055\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"3x%5E2%2B6x%2B-7\" can be factored:
\n" ); document.write( " \"3x%5E2%2B6x%2B-7+=+3%28x-0.825741858350554%29%2A%28x--2.82574185835055%29\"
\n" ); document.write( " Again, the answer is: 0.825741858350554, -2.82574185835055.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+3%2Ax%5E2%2B6%2Ax%2B-7+%29\"

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );