document.write( "Question 197634: factor out the problem.
\n" ); document.write( "
\n" ); document.write( "2x^2+13x+15
\n" ); document.write( "
\n" ); document.write( "thank you
\n" ); document.write( "

Algebra.Com's Answer #148195 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2%2B13x%2B15\", we can see that the first coefficient is \"2\", the second coefficient is \"13\", and the last term is \"15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"15\" to get \"%282%29%2815%29=30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"30\" (the previous product) and add to the second coefficient \"13\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"30\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"30\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,5,6,10,15,30\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-5,-6,-10,-15,-30\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"30\".\r
\n" ); document.write( "\n" ); document.write( "1*30
\n" ); document.write( "2*15
\n" ); document.write( "3*10
\n" ); document.write( "5*6
\n" ); document.write( "(-1)*(-30)
\n" ); document.write( "(-2)*(-15)
\n" ); document.write( "(-3)*(-10)
\n" ); document.write( "(-5)*(-6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"13\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1301+30=31
2152+15=17
3103+10=13
565+6=11
-1-30-1+(-30)=-31
-2-15-2+(-15)=-17
-3-10-3+(-10)=-13
-5-6-5+(-6)=-11
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"10\" add to \"13\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"10\" both multiply to \"30\" and add to \"13\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"13x\" with \"3x%2B10x\". Remember, \"3\" and \"10\" add to \"13\". So this shows us that \"3x%2B10x=13x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%283x%2B10x%29%2B15\" Replace the second term \"13x\" with \"3x%2B10x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2%2B3x%29%2B%2810x%2B15%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29%2B%2810x%2B15%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B3%29%2B5%282x%2B3%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B5%29%282x%2B3%29\" Combine like terms. Or factor out the common term \"2x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2%2B13x%2B15\" factors to \"%28x%2B5%29%282x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B5%29%282x%2B3%29\" to get \"2x%5E2%2B13x%2B15\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );