document.write( "Question 196046: Factor completely:
\n" ); document.write( "x^2 - 5x - 7x + 35 = x^2 - 12x + 35
\n" ); document.write( "2x^2 + 11x + 5
\n" ); document.write( "x^4y - 16y = x^4 - 15y
\n" ); document.write( "Thank you so much!
\n" ); document.write( "

Algebra.Com's Answer #146971 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming that you want to factor \"x%5E2+-+12x+%2B+35\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2-12x%2B35\", we can see that the first coefficient is \"1\", the second coefficient is \"-12\", and the last term is \"35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"35\" to get \"%281%29%2835%29=35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"35\" (the previous product) and add to the second coefficient \"-12\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"35\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"35\":\r
\n" ); document.write( "\n" ); document.write( "1,5,7,35\r
\n" ); document.write( "\n" ); document.write( "-1,-5,-7,-35\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"35\".\r
\n" ); document.write( "\n" ); document.write( "1*35
\n" ); document.write( "5*7
\n" ); document.write( "(-1)*(-35)
\n" ); document.write( "(-5)*(-7)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-12\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1351+35=36
575+7=12
-1-35-1+(-35)=-36
-5-7-5+(-7)=-12
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"-7\" add to \"-12\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"-7\" both multiply to \"35\" and add to \"-12\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-12x\" with \"-5x-7x\". Remember, \"-5\" and \"-7\" add to \"-12\". So this shows us that \"-5x-7x=-12x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%28-5x-7x%29%2B35\" Replace the second term \"-12x\" with \"-5x-7x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2-5x%29%2B%28-7x%2B35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-5%29%2B%28-7x%2B35%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x-5%29-7%28x-5%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x-7%29%28x-5%29\" Combine like terms. Or factor out the common term \"x-5\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2-12x%2B35\" factors to \"%28x-7%29%28x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x-7%29%28x-5%29\" to get \"x%5E2-12x%2B35\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2x%5E2%2B11x%2B5\", we can see that the first coefficient is \"2\", the second coefficient is \"11\", and the last term is \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"5\" to get \"%282%29%285%29=10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"10\" (the previous product) and add to the second coefficient \"11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"10\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"10\":\r
\n" ); document.write( "\n" ); document.write( "1,2,5,10\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-5,-10\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"10\".\r
\n" ); document.write( "\n" ); document.write( "1*10
\n" ); document.write( "2*5
\n" ); document.write( "(-1)*(-10)
\n" ); document.write( "(-2)*(-5)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1101+10=11
252+5=7
-1-10-1+(-10)=-11
-2-5-2+(-5)=-7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"1\" and \"10\" add to \"11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"1\" and \"10\" both multiply to \"10\" and add to \"11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"11x\" with \"x%2B10x\". Remember, \"1\" and \"10\" add to \"11\". So this shows us that \"x%2B10x=11x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%5E2%2Bhighlight%28x%2B10x%29%2B5\" Replace the second term \"11x\" with \"x%2B10x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%5E2%2Bx%29%2B%2810x%2B5%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B1%29%2B%2810x%2B5%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%282x%2B1%29%2B5%282x%2B1%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B5%29%282x%2B1%29\" Combine like terms. Or factor out the common term \"2x%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2x%5E2%2B11x%2B5\" factors to \"%28x%2B5%29%282x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B5%29%282x%2B1%29\" to get \"2x%5E2%2B11x%2B5\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'm assuming you want to factor \"x%5E4y+-+16y\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E4y+-+16y\" Start with the given expression\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28x%5E4+-+16%29\" Factor out the GCF\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28x%5E2+-+4%29%28x%5E2+%2B4%29\" Factor \"x%5E4+-+16\" using the difference of squares formula\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28x-2%29%28x%2B2%29%28x%5E2+%2B4%29\" Factor \"x%5E2+-+4\" using the difference of squares formula\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E4y+-+16y\" completely factors to \"y%28x-2%29%28x%2B2%29%28x%5E2+%2B4%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );