document.write( "Question 195803: I need help solving this problem\r
\n" );
document.write( "\n" );
document.write( "Factor completely\r
\n" );
document.write( "\n" );
document.write( "27b^4-64b\r
\n" );
document.write( "\n" );
document.write( "I came up with b(-27+8b^3) which is incorrect.... Not sure how to do it. \n" );
document.write( "
Algebra.Com's Answer #146812 by nerdybill(7384)![]() ![]() You can put this solution on YOUR website! 27b^4-64b \n" ); document.write( "Start by factoring out 3b: \n" ); document.write( "b(27b^3 - 64) \n" ); document.write( "Rewrite as: \n" ); document.write( "b((3b)^3 - 4^3) \n" ); document.write( "Notice, you now have a \"difference of cubes\". This is a \"special\" factor. \n" ); document.write( "An expression of the form a3 - b3. The difference of two cubes factors into \n" ); document.write( "(a - b)(a^2 + ab + b^2). \n" ); document.write( ". \n" ); document.write( "So we can rewrite: \n" ); document.write( "b((3b)^3 - 4^3) \n" ); document.write( "as \n" ); document.write( "b(3b - 4)((3b)^2 + (3b)(4) + 4^2) \n" ); document.write( "b(3b - 4)(9b^2 + 12b + 16)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |