Algebra.Com's Answer #146116 by Edwin McCravy(20056)  You can put this solution on YOUR website! i have to write an equation of the line that is tangent to the circle at that point:\r \n" );
document.write( "\n" );
document.write( "x^2+y^2=50; (-7,1) \n" );
document.write( "\r\n" );
document.write( "Find the derivative by the method of implicit functions\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Substitute (x,y)=(-7,1)\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Therefore the slope, m, of the tangent line\r\n" );
document.write( "at (-7,1) is 7. So m=7\r\n" );
document.write( "\r\n" );
document.write( "Now we use the point-slope form of the\r\n" );
document.write( "equation of a line:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To check it we draw the equation of the circle\r\n" );
document.write( "and the line:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |