document.write( "Question 194503: an open- top box is to be made from an 8 in by 12 in rectangular piece of copper by cutting equal squares (x in by x in) from each corner and folding up the sides. write volume of the box V as a function of x. use a graphing calculator to find the maximum possible volume to the nearest hundredth of a cubic inch. what are the final dimensions of this box?
\n" ); document.write( "I am having hard time for this problem. please help me please...... it is urgent for my midterm exam please.....
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #145944 by ankor@dixie-net.com(22740)\"\" \"About 
You can put this solution on YOUR website!
an open- top box is to be made from an 8 in by 12 in rectangular piece of copper by cutting equal squares (x in by x in) from each corner and folding up the sides. write volume of the box V as a function of x. use a graphing calculator to find the maximum possible volume to the nearest hundredth of a cubic inch. what are the final dimensions of this box?
\n" ); document.write( ":
\n" ); document.write( "Draw this out and you will see the dimensions of the box will be:
\n" ); document.write( "(8-2x) by (12-2x) by x
\n" ); document.write( ":
\n" ); document.write( "FOIL the length and width
\n" ); document.write( "96 - 16x - 24x + 4x^2
\n" ); document.write( "Write this
\n" ); document.write( "4x^2 - 40x + 96
\n" ); document.write( "Multiply this by the height (x) and you have the volume function
\n" ); document.write( ":
\n" ); document.write( "V(x) = 4x^3 - 40x^2 + 96x
\n" ); document.write( ":
\n" ); document.write( "Find the maximum volume on a graphing calc: enter: y = 4x^3 - 40x^2 + 96x
\n" ); document.write( "Scale x:-4,+8; y:-50, +150
\n" ); document.write( "Should look like this
\n" ); document.write( "\"+graph%28+300%2C+200%2C+-4%2C+8%2C+-50%2C+150%2C+4x%5E3-40x%5E2%2B96x%29+\"
\n" ); document.write( "You can see the max that we want is about x=1.6
\n" ); document.write( "Use the max feature on the calc to find the exact value of x and y(volume)
\n" ); document.write( "I got x = 1.57 in; y = 67.6 cu/in as the max volume
\n" ); document.write( ":
\n" ); document.write( "Sorry about that. If have any questions, email me. Carl
\n" ); document.write( "
\n" ); document.write( "
\n" );