document.write( "Question 194080This question is from textbook Saxon Algebra 2
\n" );
document.write( ": If P(x) = 3x^5 - 8x^4 + 3x^3 + 2x^2 - 16x + 14, then P(3) = ?
\n" );
document.write( "...is it 682?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #145675 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! There are two ways to do this:\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Direct Substitution and Evaluation Method:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "OR....\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Synthetic Division Method:\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our test zero is 3\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up a synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the function to the right of the test zero.
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 3)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 3 by 3 and place the product (which is 9) right underneath the second coefficient (which is -8)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 9 and -8 to get 1. Place the sum right underneath 9.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 3 by 1 and place the product (which is 3) right underneath the third coefficient (which is 3)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 3 and 3 to get 6. Place the sum right underneath 3.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 3 by 6 and place the product (which is 18) right underneath the fourth coefficient (which is 2)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 18 and 2 to get 20. Place the sum right underneath 18.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 3 by 20 and place the product (which is 60) right underneath the fifth coefficient (which is -16)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 60 and -16 to get 44. Place the sum right underneath 60.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 3 by 44 and place the product (which is 132) right underneath the sixth coefficient (which is 14)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 132 and 14 to get 146. Place the sum right underneath 132.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since the last column adds to 146, we have a remainder of 146. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So according to the remainder theorem, this means that |