document.write( "Question 193885: the second term of the infinite geometric series, \r
\n" );
document.write( "\n" );
document.write( "a + ar + ar^2 + ar^3......\r
\n" );
document.write( "\n" );
document.write( "is eaqual to 4 and the same to infinity of this series is 18. Find the two possible values of the common ratio, r. what are the corresponding values of a? \n" );
document.write( "
Algebra.Com's Answer #145564 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! the second term of the infinite geometric series, \n" ); document.write( "a + ar + ar^2 + ar^3...... \n" ); document.write( "is equal to 4 and the same to infinity of this series is 18. Find the two possible values of the common ratio, r. what are the corresponding values of a? \n" ); document.write( "---------------- \n" ); document.write( "2nd term: a(2) = ar = 4 \n" ); document.write( "Sum : a/(1-r) = 18 \n" ); document.write( "-------------------------- \n" ); document.write( " Rearrange: \n" ); document.write( "a = 4/r \n" ); document.write( "--- \n" ); document.write( "Substitute: \n" ); document.write( "(4/r)/(1-r) = 18 \n" ); document.write( "4/r = 18 - 18r \n" ); document.write( "4 = 18r-18r^2 \n" ); document.write( "18r^2 - 18r +4 = 0 \n" ); document.write( "9r^2 - 9r + 2 = 0 \n" ); document.write( "9r^2 - 6r - 3r + 2 = 0 \n" ); document.write( "3r(3r-2)-(3r-2) = 0 \n" ); document.write( "(3r-2)(3r-1) = 0 \n" ); document.write( "r = 2/3 or r = 1/3 \n" ); document.write( "------------- \n" ); document.write( "Since a = 4/r \n" ); document.write( "a = 6 when r = 2/3 or a = 12 when r = 1/3 \n" ); document.write( "--------------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H \n" ); document.write( " |