document.write( "Question 26646: Let (Fn)=(1,1,2,3,5,8,13,21,34,55,...) be the fibonacci sequence defined by
\n" ); document.write( "F1=F2=1, Fn=F(n-1)+F(n-2) if n>2.
\n" ); document.write( "Show that it holds for n which is greator and equal to 1.
\n" ); document.write( "Fn < 2^(n)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #14517 by venugopalramana(3286)\"\" \"About 
You can put this solution on YOUR website!
LET US COMPARE THE GIVEN SERIES WITH A GEOMETRIC SERIES WHOSE WE CAN DO...
\n" ); document.write( "THE G.P IS ...1,2,4,8,16,.......WITH C.R. OF 2 AND A=1.
\n" ); document.write( "FIRSTLY WE FIND THAT THE GIVEN SERIES IS ALL POSITIVE NUMBERS AND INCREASING SERIES AFTER F2,SINCE EVERY TERM IS THE SUM OF PREVIOUS 2 TERMS WHICH ARE POSITIVE...JENCE..F2\n" ); document.write( "NOW WE HAVE..
\n" ); document.write( "F1=1............................................G1=1.........F1=G1
\n" ); document.write( "F2=1............................................G2=2G1.......F2\n" ); document.write( "F3=F1+F2\n" ); document.write( "F4=F2+F3\n" ); document.write( "....................................................................
\n" ); document.write( ".....................................................................
\n" ); document.write( "FN=F(N-2)+F(N-1)\n" ); document.write( "------------------------------------------------------------------------
\n" ); document.write( "ADDING ALL THE ABOVE WE GET...(F1+F2+F3+F4+...+FN)<(G1+G2+G3+.....+GN)
\n" ); document.write( "BUT WE KNOW THAT
\n" ); document.write( "G1+G2+G3+.....+GN=1+2+4+8+.........2^(N-1)
\n" ); document.write( "A=1...R=2...SO...SUM IS ..A*(R^N-1)/(R-1)=1*(2^N-1)/(2-1)=2^N-1
\n" ); document.write( "HENCE
\n" ); document.write( "(F1+F2+F3+F4+...+FN)<(G1+G2+G3+.....+GN)=2^N-1<2^N...THEN OBVIOUSLY
\n" ); document.write( "FN<2^N\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );