document.write( "Question 193068: THE FACTOR THEOREM\r
\n" );
document.write( "\n" );
document.write( "Factor P(x) = 6x^3 + 31x^2 + 4x -5 given that x+5 is one factor.\r
\n" );
document.write( "\n" );
document.write( "Factor R(x) = x^4 -2x3 + x^2 -4, given that x+1 and x-2 are factors. \n" );
document.write( "
Algebra.Com's Answer #144914 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! # 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "To factor \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First, let's find our test zero:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our test zero is -5\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 6)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5 by 6 and place the product (which is -30) right underneath the second coefficient (which is 31)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -30 and 31 to get 1. Place the sum right underneath -30.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5 by 1 and place the product (which is -5) right underneath the third coefficient (which is 4)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -5 and 4 to get -1. Place the sum right underneath -5.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -5 by -1 and place the product (which is 5) right underneath the fourth coefficient (which is -5)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 5 and -5 to get 0. Place the sum right underneath 5.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first 3 coefficients (6,1,-1) form the quotient\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I'll let you continue the factorization....\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "# 2\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our test zero is -1\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -1 by 1 and place the product (which is -1) right underneath the second coefficient (which is -2)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -1 and -2 to get -3. Place the sum right underneath -1.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -1 by -3 and place the product (which is 3) right underneath the third coefficient (which is 1)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 3 and 1 to get 4. Place the sum right underneath 3.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -1 by 4 and place the product (which is -4) right underneath the fourth coefficient (which is 0)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -4 and 0 to get -4. Place the sum right underneath -4.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply -1 by -4 and place the product (which is 4) right underneath the fifth coefficient (which is -4)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 4 and -4 to get 0. Place the sum right underneath 4.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first 4 coefficients (1,-3,4,-4) form the quotient\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In other words, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's use the factor \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our test zero is 2\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 2 by 1 and place the product (which is 2) right underneath the second coefficient (which is -3)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 2 and -3 to get -1. Place the sum right underneath 2.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 2 by -1 and place the product (which is -2) right underneath the third coefficient (which is 4)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add -2 and 4 to get 2. Place the sum right underneath -2.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Multiply 2 by 2 and place the product (which is 4) right underneath the fourth coefficient (which is -4)\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Add 4 and -4 to get 0. Place the sum right underneath 4.\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The first 3 coefficients (1,-1,2) form the quotient\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Basically \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This means that \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So all you have to do now is factor |