document.write( "Question 193068: THE FACTOR THEOREM\r
\n" ); document.write( "\n" ); document.write( "Factor P(x) = 6x^3 + 31x^2 + 4x -5 given that x+5 is one factor.\r
\n" ); document.write( "\n" ); document.write( "Factor R(x) = x^4 -2x3 + x^2 -4, given that x+1 and x-2 are factors.
\n" ); document.write( "

Algebra.Com's Answer #144914 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
# 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To factor \"6x%5E3+%2B+31x%5E2+%2B+4x+-+5\", we can use synthetic division\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "First, let's find our test zero:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%2B5=0\" Set the given factor \"x%2B5\" equal to zero\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-5\" Solve for x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so our test zero is -5\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of \"6x%5E3+%2B+31x%5E2+%2B+4x+-+5\" to the right of the test zero.\n" ); document.write( "\n" ); document.write( "
-5|6314-5
|
\r
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 6)\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-5|6314-5
|
6
\r
\n" ); document.write( "\n" ); document.write( " Multiply -5 by 6 and place the product (which is -30) right underneath the second coefficient (which is 31)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30
6
\r
\n" ); document.write( "\n" ); document.write( " Add -30 and 31 to get 1. Place the sum right underneath -30.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30
61
\r
\n" ); document.write( "\n" ); document.write( " Multiply -5 by 1 and place the product (which is -5) right underneath the third coefficient (which is 4)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30-5
61
\r
\n" ); document.write( "\n" ); document.write( " Add -5 and 4 to get -1. Place the sum right underneath -5.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30-5
61-1
\r
\n" ); document.write( "\n" ); document.write( " Multiply -5 by -1 and place the product (which is 5) right underneath the fourth coefficient (which is -5)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30-55
61-1
\r
\n" ); document.write( "\n" ); document.write( " Add 5 and -5 to get 0. Place the sum right underneath 5.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-5|6314-5
|-30-55
61-10
\r
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \"x%2B5\" is a factor of \"6x%5E3+%2B+31x%5E2+%2B+4x+-+5\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first 3 coefficients (6,1,-1) form the quotient\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x%5E2+%2B+x+-+1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6x%5E3+%2B+31x%5E2+%2B+4x+-+5\" factors to \"%28x%2B5%29%286x%5E2+%2B+x+-+1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6x%5E3+%2B+31x%5E2+%2B+4x+-+5=%28x%2B5%29%286x%5E2+%2B+x+-+1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "I'll let you continue the factorization....\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%2B1=0\" Set the denominator \"x%2B1\" equal to zero\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-1\" Solve for x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so our test zero is -1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of \"x%5E4+-2x3+%2B+x%5E2+-4\" to the right of the test zero.(note: remember if a polynomial goes from \"1x%5E2\" to \"-4x%5E0\" there is a zero coefficient for \"x%5E1\". This is simply because \"x%5E4+-+2x%5E3+%2B+x%5E2+-+4\" really looks like \"1x%5E4%2B-2x%5E3%2B1x%5E2%2B0x%5E1%2B-4x%5E0\"\n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|
\r
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|
1
\r
\n" ); document.write( "\n" ); document.write( " Multiply -1 by 1 and place the product (which is -1) right underneath the second coefficient (which is -2)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-1
1
\r
\n" ); document.write( "\n" ); document.write( " Add -1 and -2 to get -3. Place the sum right underneath -1.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-1
1-3
\r
\n" ); document.write( "\n" ); document.write( " Multiply -1 by -3 and place the product (which is 3) right underneath the third coefficient (which is 1)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13
1-3
\r
\n" ); document.write( "\n" ); document.write( " Add 3 and 1 to get 4. Place the sum right underneath 3.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13
1-34
\r
\n" ); document.write( "\n" ); document.write( " Multiply -1 by 4 and place the product (which is -4) right underneath the fourth coefficient (which is 0)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13-4
1-34
\r
\n" ); document.write( "\n" ); document.write( " Add -4 and 0 to get -4. Place the sum right underneath -4.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13-4
1-34-4
\r
\n" ); document.write( "\n" ); document.write( " Multiply -1 by -4 and place the product (which is 4) right underneath the fifth coefficient (which is -4)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13-44
1-34-4
\r
\n" ); document.write( "\n" ); document.write( " Add 4 and -4 to get 0. Place the sum right underneath 4.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
-1|1-210-4
|-13-44
1-34-40
\r
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \"x%2B1\" is a factor of \"x%5E4+-+2x%5E3+%2B+x%5E2+-+4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first 4 coefficients (1,-3,4,-4) form the quotient\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E3+-+3x%5E2+%2B+4x+-+4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E4+-+2x%5E3+%2B+x%5E2+-+4\" factors to \"%28x%2B1%29%28x%5E3+-+3x%5E2+%2B+4x+-+4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"x%5E4+-+2x%5E3+%2B+x%5E2+-+4=%28x%2B1%29%28x%5E3+-+3x%5E2+%2B+4x+-+4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's use the factor \"x-2\" to factor \"x%5E3+-+3x%5E2+%2B+4x+-+4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "First lets find our test zero:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x-2=0\" Set the denominator \"x-2\" equal to zero\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=2\" Solve for x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so our test zero is 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of \"x%5E3+-+3x%5E2+%2B+4x+-+4\" to the right of the test zero.\n" ); document.write( "\n" ); document.write( "
2|1-34-4
|
\r
\n" ); document.write( "\n" ); document.write( "Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
2|1-34-4
|
1
\r
\n" ); document.write( "\n" ); document.write( " Multiply 2 by 1 and place the product (which is 2) right underneath the second coefficient (which is -3)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2
1
\r
\n" ); document.write( "\n" ); document.write( " Add 2 and -3 to get -1. Place the sum right underneath 2.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2
1-1
\r
\n" ); document.write( "\n" ); document.write( " Multiply 2 by -1 and place the product (which is -2) right underneath the third coefficient (which is 4)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2-2
1-1
\r
\n" ); document.write( "\n" ); document.write( " Add -2 and 4 to get 2. Place the sum right underneath -2.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2-2
1-12
\r
\n" ); document.write( "\n" ); document.write( " Multiply 2 by 2 and place the product (which is 4) right underneath the fourth coefficient (which is -4)\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2-24
1-12
\r
\n" ); document.write( "\n" ); document.write( " Add 4 and -4 to get 0. Place the sum right underneath 4.\r
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
2|1-34-4
|2-24
1-120
\r
\n" ); document.write( "\n" ); document.write( "Since the last column adds to zero, we have a remainder of zero. This means \"x-2\" is a factor of \"x%5E3+-+3x%5E2+%2B+4x+-+4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now lets look at the bottom row of coefficients:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first 3 coefficients (1,-1,2) form the quotient\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2+-+x+%2B+2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"%28x%5E3+-+3x%5E2+%2B+4x+-+4%29%2F%28x-2%29=x%5E2+-+x+%2B+2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Basically \"x%5E3+-+3x%5E2+%2B+4x+-+4\" factors to \"%28x-2%29%28x%5E2+-+x+%2B+2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E3+-+3x%5E2+%2B+4x+-+4=%28x-2%29%28x%5E2+-+x+%2B+2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that \"x%5E4+-+2x%5E3+%2B+x%5E2+-+4=%28x%2B1%29%28x%5E3+-+3x%5E2+%2B+4x+-+4%29\" then becomes\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E4+-+2x%5E3+%2B+x%5E2+-+4=%28x%2B1%29%28x-2%29%28x%5E2+-+x+%2B+2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So all you have to do now is factor \"x%5E2+-+x+%2B+2\" (I'll let you do that)
\n" ); document.write( "
\n" );