document.write( "Question 193061: Construct Conditional Proofs\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "1. P → Q
\n" );
document.write( "2. (P • Q) → R
\n" );
document.write( "3. P → (R → S)
\n" );
document.write( "4. (R • S) → T / P → T (Hint: This is a long proof!)\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #144910 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. P → Q\r\n" ); document.write( "2. (P • Q) → R\r\n" ); document.write( "3. P → (R → S)\r\n" ); document.write( "4. (R • S) → T / P → T\r\n" ); document.write( "-----------------------\r\n" ); document.write( "5. P Assumption\r\n" ); document.write( "6. Q 1,5 Modus Ponens\r\n" ); document.write( "7. P • Q 5,6 Conjunction \r\n" ); document.write( "8. R 2,7 Modus Ponens\r\n" ); document.write( "9. P • R 5,8 Conjunction\r\n" ); document.write( "10. (P • R) -> S 3 Exportation\r\n" ); document.write( "11. S 10,9 Modus Ponens\r\n" ); document.write( "12. R • S 8,11 Conjunction\r\n" ); document.write( "13. T 4,12 Modus Ponens\r\n" ); document.write( "14. P -> T 5,13 Conditional Proof\r\n" ); document.write( "\n" ); document.write( " |