document.write( "Question 192610: decide whether the pair of lines is parallell, perpendiculr or neither:?
\n" );
document.write( "3x + 2y = 3
\n" );
document.write( "2x + 3y =8\r
\n" );
document.write( "\n" );
document.write( "solve the following syestem of equations
\n" );
document.write( " x + 4y = 7
\n" );
document.write( " x = 2 -4y \n" );
document.write( "
Algebra.Com's Answer #144607 by RAY100(1637)![]() ![]() ![]() You can put this solution on YOUR website! checking the slopes by using the slope intercept form, (y=mx+b), we define parallel if m1=m2, and perpendicular if m1=1/-m2.\r \n" ); document.write( "\n" ); document.write( "3x+2y=3 \n" ); document.write( "subt 3x both sides \n" ); document.write( "2y=-3x+3 \n" ); document.write( "divide by 2 both sides \n" ); document.write( "y=(-3/2)x+(3/2), therefore slope if (-3/2)\r \n" ); document.write( "\n" ); document.write( "2x+3y=8 \n" ); document.write( "subt 2x both sides \n" ); document.write( "3y=-2x+8 \n" ); document.write( "divide both sides by 3 \n" ); document.write( "y=(-2/3)x +8, therefore slope is (-2/3)\r \n" ); document.write( "\n" ); document.write( "comparing slopes 0f (-3/2) and (-2/3) they are neither parallel nor perpendicular\r \n" ); document.write( "\n" ); document.write( "second problem\r \n" ); document.write( "\n" ); document.write( "(1) x+4y=7 \n" ); document.write( "(2) x=2-4y \n" ); document.write( "substitute (2) into (1)\r \n" ); document.write( "\n" ); document.write( "(2-4y) +4y=7 \n" ); document.write( "2=7 \n" ); document.write( "therefore no solutions\r \n" ); document.write( "\n" ); document.write( "restating (2) as x+4y=2\r \n" ); document.write( "\n" ); document.write( "we can see that (1) & (2) are parallel with different y intercepts \n" ); document.write( " |