document.write( "Question 192419: Determine the dimensions of the cylinder of maximum volume that can be inscribed in a sphere with a radius of 8cm.\r
\n" ); document.write( "\n" ); document.write( "The 8cm is the sphere's radius.
\n" ); document.write( "

Algebra.Com's Answer #144508 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Consider a diameter of the sphere perpendicular to the inscribed cylinder's axis. From the center of the sphere, construct a radius that intersects the circle of intersection between the sphere and one base of the cylinder. We need to derive a function for the volume of the cylinder in terms of the angle between the above described diameter and the constructed radius. Let the measure of that angle be x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Working this problem will be computationally simpler if we consider the sphere to have radius r for the time being. Given that, the radius of the base of the cylinder is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "And the area of the base of the cylinder is then:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Half the height of the cylinder is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "And then the height of the cylinder is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now we can describe the volume of the cylinder:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since and and these are the limiting values for x, if we can find an extreme point for the function on the interval , we can be assured that this point is a maximum.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Take the derivative of :\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "First factor out the constants:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now define and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now use the Product Rule:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the Chain Rule to derive \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then and \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A local extreme (and here, a local maximum) is at the point where the first derivative is equal to zero, so:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Applying the zero product rule:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "or\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But which is not in the feasible interval, , hence we exclude this value as an extraneous root.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To solve:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "and, again using to determine:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Substituting these values you can use the volume function to calculate the volume of the maximum inscribed cylinder for the general sphere of radius r:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice that the calculation reduces to simply multiplying the volume of the sphere by a factor of .\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Of course, for your specific sphere of radius 8, you need to substitute for r. I'll let you do the arithmetic.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );