document.write( "Question 25458: (a)Find the (multiplicative) inverse of the complex number (3-i)^2 in the form a+ib, a,b belongs to the reals(R).\r
\n" );
document.write( "\n" );
document.write( "(b) solve the equation (((1+i)^5)x)= ((1-i)^3) in the ring C of complex numbers (also as number of the form a+ib, a,b belong to the reals(R). \n" );
document.write( "
Algebra.Com's Answer #14435 by venugopalramana(3286)![]() ![]() You can put this solution on YOUR website! (a)Find the (multiplicative) inverse of the complex number (3-i)^2 in the form a+ib, a,b belongs to the reals(R). \n" ); document.write( "LET A+ib=1/(3-i)^2 \n" ); document.write( "(A+iB)(3-i)^2=1 \n" ); document.write( "LHS=(A+iB)((9+i^2-6i)=(A+iB)(9-1-6i)=(A+iB)(8-6i) \n" ); document.write( "=8A-6Ai+8Bi-6Bi^2=(8A+6B)+i(8B-6A)=RHS=1=1+0*i...HENCE EQUATING REAL AND IMAGINARY PARTS,WE GET \n" ); document.write( "8A+6B=1.........I \n" ); document.write( "8B-6A=0...OR.....4B-3A=0.............II \n" ); document.write( "2*EQN.I-3*EQN.II GIVES US \n" ); document.write( "16A+12B-2-12B+9A=0 \n" ); document.write( "25A=2 \n" ); document.write( "A=2/25 \n" ); document.write( "B=3A/4...=3*2/(25*4)=3/50 \n" ); document.write( "HENCE 1/(3-i)^2 = (2/25)+(3/50)*i\r \n" ); document.write( "\n" ); document.write( "(b) solve the equation (((1+i)^5)x)= ((1-i)^3) in the ring C of complex numbers (also as number of the form a+ib, a,b belong to the reals(R). \n" ); document.write( "(((1+i)^5)x)= ((1-i)^3) \n" ); document.write( "X=(1-i)^3/(1+i)^5=((1-i)^3)((1-i)^5)/((1-i)^5(1+i)^5)= \n" ); document.write( "(1-i)^8/((1+i)(1-i))^5=(1-i)^8/(1-i^2)^5=(1-i)^8/32 \n" ); document.write( "NOW WE HAVE \n" ); document.write( "(1-i)^2=1+i^2-2i=1-1-2i=-2i \n" ); document.write( "(1-i)^8={(1-i)^2}^4=(-2i)^4=(-2^4)(i^2)^2=16(-1)^2=16 \n" ); document.write( "HENCE WE GET 16/32=1/2 AS THE ANSWER FOR X \n" ); document.write( " \n" ); document.write( " |