document.write( "Question 26480: Let a and b be positive integers, assume that (a^(3))|(b^(3)). \r
\n" ); document.write( "\n" ); document.write( "How do i prove tha a|b using prime factorization of a and b.
\n" ); document.write( "

Algebra.Com's Answer #14422 by venugopalramana(3286)\"\" \"About 
You can put this solution on YOUR website!
Let a and b be positive integers, assume that (a^(3))|(b^(3)). \r
\n" ); document.write( "\n" ); document.write( "How do i prove tha a|b using prime factorization of a and b.
\n" ); document.write( "LET A ={(A1)^P1}{(A2)^P2}{(A3)^P3}....ETC...WHERE,A1,A2,A3 ARE ALL PRIME INTEGERS AND P1,P2,P3,ETC ARE INTEHERS.SIMILARLY.....
\n" ); document.write( "LET B ={(B1)^Q1}{(B2)^Q2}{(B3)^Q3}....ETC...WHERE,B1,B2,B3 ARE ALL PRIME INTEGERS AND Q1,Q2,Q3,ETC ARE INTEHERS
\n" ); document.write( "HENCE A^3={(A1)^3P1}{(A2)^3P2}{(A3)^3P3}....ETC..AND
\n" ); document.write( "B ={(B1)^3Q1}{(B2)^3Q2}{(B3)^3Q3}....ETC.......
\n" ); document.write( "NOW IF A^3|B^3.....ALL OF THE PRIME FACTORS OF A^3 SHALL BE CONTAINED IN B^3..
\n" ); document.write( "THUS {(A1)^3P1}{(A2)^3P2}{(A3)^3P3}....ETC..ARE CONTAINED IN B^3.
\n" ); document.write( "HENCE OBVIOUSLY ALL PRIME FACTORS OF A...NAMELY...{(A1)^P1}{(A2)^P2}{(A3)^P3}....ETC..ARE CONTAINED IN B...HENCE A|B
\n" ); document.write( "
\n" );