document.write( "Question 191791: The length of a rhombus is 10 cm an measured angle A is 60 degrees. Find the length of the longer diagonal AC. \n" ); document.write( "
Algebra.Com's Answer #143934 by RAY100(1637)![]() ![]() ![]() You can put this solution on YOUR website! RHOMBUS = ALL SIDES EQUAL\r \n" ); document.write( "\n" ); document.write( " f ----d.................................c \n" ); document.write( " ! \n" ); document.write( " ! \n" ); document.write( " ! \n" ); document.write( " ! \n" ); document.write( " ! \n" ); document.write( " a....................................b---e\r \n" ); document.write( "\n" ); document.write( "Let abcd be rhombus \n" ); document.write( "angle dcb = 60 deg \n" ); document.write( "therefore angle bcd =60, angle bce = 30 deg\r \n" ); document.write( "\n" ); document.write( "bce is a 30 - 60 - 90 right triangle\r \n" ); document.write( "\n" ); document.write( "bc =10 (given) \n" ); document.write( "be = 5 (given 1/2 of bc due to 30-60-90 proportions)\r \n" ); document.write( "\n" ); document.write( "ce = 5sq rt 3 ( given 30-60-90 proportions\r \n" ); document.write( "\n" ); document.write( "triangle ae-ce-ca is rt triangle with sides (10 +5 =15) - (5 sq rt 3) - diagonal (ac)\r \n" ); document.write( "\n" ); document.write( "using pythagorous c^2 = a^2 = b^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(ac)^2 = (ae)^2 + (ce)^2 \n" ); document.write( "ac^2 = 15^2 + (5sq rt 3)^2 \n" ); document.write( "ac^2 = 225 + (25*3) \n" ); document.write( "ac^2 = 300 \n" ); document.write( "ac = sq rt 300 = 10 sq rt 3\r \n" ); document.write( "\n" ); document.write( "short diagonal is bd = 5 sq rt 7 in similar fashion\r \n" ); document.write( "\n" ); document.write( "bd^2= 10^2 + ( 5sq rt 3)^2 = 175 \n" ); document.write( " |