document.write( "Question 191799: factor completely\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x^2+22x+57
\n" ); document.write( "

Algebra.Com's Answer #143906 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"x%5E2%2B22x%2B57\", we can see that the first coefficient is \"1\", the second coefficient is \"22\", and the last term is \"57\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"57\" to get \"%281%29%2857%29=57\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"57\" (the previous product) and add to the second coefficient \"22\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"57\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"57\":\r
\n" ); document.write( "\n" ); document.write( "1,3,19,57\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-19,-57\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"57\".\r
\n" ); document.write( "\n" ); document.write( "1*57
\n" ); document.write( "3*19
\n" ); document.write( "(-1)*(-57)
\n" ); document.write( "(-3)*(-19)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"22\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1571+57=58
3193+19=22
-1-57-1+(-57)=-58
-3-19-3+(-19)=-22
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"19\" add to \"22\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"19\" both multiply to \"57\" and add to \"22\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"22x\" with \"3x%2B19x\". Remember, \"3\" and \"19\" add to \"22\". So this shows us that \"3x%2B19x=22x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%5E2%2Bhighlight%283x%2B19x%29%2B57\" Replace the second term \"22x\" with \"3x%2B19x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%5E2%2B3x%29%2B%2819x%2B57%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B3%29%2B%2819x%2B57%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%28x%2B3%29%2B19%28x%2B3%29\" Factor out \"19\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B19%29%28x%2B3%29\" Combine like terms. Or factor out the common term \"x%2B3\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"x%5E2%2B22x%2B57\" factors to \"%28x%2B19%29%28x%2B3%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B19%29%28x%2B3%29\" to get \"x%5E2%2B22x%2B57\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );