document.write( "Question 191251This question is from textbook algebra and trigonometry structure and method book 2
\n" ); document.write( ": Find the number of times r is a root of P(x)=0.
\n" ); document.write( "P(x)= x^4+4x^3-16x-16; r=-2\r
\n" ); document.write( "\n" ); document.write( "i found the depressed eruation twice but the numbers were all messed up. please help and explain.
\n" ); document.write( "

Algebra.Com's Answer #143544 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
First, perform synthetic division where -2 is the test zero (let me know if you need help with synthetic division)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "-2 | 1   4   0   -16   -16\r\n" );
document.write( "   |    -2  -4     8    16\r\n" );
document.write( "   ------------------------\r\n" );
document.write( "     1   2  -4    -8     0\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the last number in the bottom row is zero, this means that the remainder is 0. So -2 is a root of \"P%28x%29=+x%5E4%2B4x%5E3-16x-16\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first 4 numbers form the depressed polynomial \"x%5E3%2B2x%5E2-4x-8\". This means that \"x%5E4%2B4x%5E3-16x-16=%28x%2B2%29%28x%5E3%2B2x%5E2-4x-8%29\"\r
\n" ); document.write( "\n" ); document.write( "=================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now perform synthetic division on \"x%5E3%2B2x%5E2-4x-8\" using the same test zero:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "-2 | 1   2  -4    -8   \r\n" );
document.write( "   |    -2   0     8   \r\n" );
document.write( "   ------------------\r\n" );
document.write( "     1   0  -4     0   \r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice how the last number in the bottom row is 0. So -2 is a root of \"x%5E3%2B2x%5E2-4x-8\". So far, r=-2 is a root of multiplicity 2 (ie -2 is a root twice).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first 3 numbers in the bottom row form the new polynomial \"x%5E2-4\". This tells us that \"x%5E3%2B2x%5E2-4x-8=%28x%2B2%29%28x%5E2-4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now perform synthetic division on the polynomial \"x%5E2-4\"\r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "-2 | 1   0  -4     \r\n" );
document.write( "   |    -2   4    \r\n" );
document.write( "   ------------\r\n" );
document.write( "     1  -2   0\r\n" );
document.write( "\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So -2 is a root of \"x%5E2-4\". So this means that r=-2 is a root of multiplicity 3 (ie -2 is a root three times).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first two numbers in the bottom row form the new polynomial: \"x-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now because -2 is NOT a root of \"x-2\", this means that we can stop looking for more roots of -2.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Or in other words, \"x%5E4%2B4x%5E3-16x-16=%28x%2B2%29%28x%2B2%29%28x%2B2%29%28x-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice how the factor \"x%2B2\" is repeated 3 times, this supports our conclusion that r=-2 is a root of multiplicity 3
\n" ); document.write( "
\n" ); document.write( "
\n" );