document.write( "Question 190741: This question is from a homework that was handed out in class.
\n" ); document.write( "I don't understand the problem, please help me.
\n" ); document.write( "Thanks\r
\n" ); document.write( "\n" ); document.write( "Solve for x
\n" ); document.write( "(x+4)^1/2 + 5x(x+4)^3/2 =0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #143213 by nerdybill(7384)\"\" \"About 
You can put this solution on YOUR website!
(x+4)^1/2 + 5x(x+4)^3/2 =0
\n" ); document.write( ".
\n" ); document.write( "Begin by factoring out (x+4)^1/2:
\n" ); document.write( "(x+4)^1/2 [1 + 5x(x+4)^2/2] = 0
\n" ); document.write( "(x+4)^1/2 [1 + 5x(x+4)] = 0
\n" ); document.write( "(x+4)^1/2 [1 + 5x^2 + 20x] = 0
\n" ); document.write( "(x+4)^1/2 [5x^2 + 20x + 1] = 0
\n" ); document.write( ".
\n" ); document.write( "Now, the problem is reduced to finding values of 'x' when:
\n" ); document.write( "(x+4)^1/2 = 0
\n" ); document.write( "and
\n" ); document.write( "5x^2 + 20x + 1 = 0
\n" ); document.write( ".
\n" ); document.write( "Top one:
\n" ); document.write( "(x+4)^1/2 = 0
\n" ); document.write( "(x+4) = 0
\n" ); document.write( "x = -4
\n" ); document.write( ".
\n" ); document.write( "Bottom one:
\n" ); document.write( "5x^2 + 20x + 1 = 0
\n" ); document.write( "Applying the quadratic equation yields two solutions:
\n" ); document.write( "x = {-0.051, -3.949}
\n" ); document.write( ".
\n" ); document.write( "Combined solutions, then are:
\n" ); document.write( "x = {-0.051, -3.949, -4}
\n" ); document.write( ".
\n" ); document.write( "Details of the quadratic follows:
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"5x%5E2%2B20x%2B1+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%2820%29%5E2-4%2A5%2A1=380\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=380 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-20%2B-sqrt%28+380+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%2820%29%2Bsqrt%28+380+%29%29%2F2%5C5+=+-0.0506411310382074\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%2820%29-sqrt%28+380+%29%29%2F2%5C5+=+-3.94935886896179\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"5x%5E2%2B20x%2B1\" can be factored:
\n" ); document.write( " \"5x%5E2%2B20x%2B1+=+5%28x--0.0506411310382074%29%2A%28x--3.94935886896179%29\"
\n" ); document.write( " Again, the answer is: -0.0506411310382074, -3.94935886896179.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+5%2Ax%5E2%2B20%2Ax%2B1+%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );