document.write( "Question 189541: 4) I can only use the 8 rules of inference.
\n" );
document.write( "1. ~(S v R)
\n" );
document.write( "2. B → (S v R)
\n" );
document.write( "3. B v P
\n" );
document.write( "4. ~Q v B / P • ~Q
\n" );
document.write( "________________________
\n" );
document.write( " 5.
\n" );
document.write( " 6.
\n" );
document.write( " 7.
\n" );
document.write( " 8.
\n" );
document.write( " 9.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #142224 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Unfortunately, this proof isn't entirely complete (it needs a rule that you cannot use...), but it is still correct nonetheless\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. ~(S v R)\r\n" ); document.write( "2. B -> (S v R)\r\n" ); document.write( "3. B v P\r\n" ); document.write( "4. ~Q v B / P & ~Q\r\n" ); document.write( "----------------------\r\n" ); document.write( "5. ~B 2,1 Modus Tollens\r\n" ); document.write( "6. P 3,5 Disjunctive Syllogism\r\n" ); document.write( "7. ~Q 4,5 Disjunctive Syllogism\r\n" ); document.write( "8. P & ~Q 6,7 Conjunction\r\n" ); document.write( "\n" ); document.write( " |