document.write( "Question 189545: 1) I can only use the 8 rules of inference...
\n" ); document.write( "1. P v Q
\n" ); document.write( "2.(Q • ~R) → S
\n" ); document.write( "3. R → P
\n" ); document.write( "4. ~P / S
\n" ); document.write( "________________________
\n" ); document.write( " 5.
\n" ); document.write( " 6.
\n" ); document.write( " 7.
\n" ); document.write( " 8.
\n" ); document.write( " 9.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #142219 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Note: I'm going to use the & symbol for the •\r
\n" ); document.write( "\n" ); document.write( "So (Q • ~R) -> S = (Q & ~R) -> S\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "1. P v Q\r\n" );
document.write( "2.(Q & ~R) -> S\r\n" );
document.write( "3. R -> P\r\n" );
document.write( "4. ~P   / S\r\n" );
document.write( "---------------\r\n" );
document.write( "5.  ~R                3,4   Modus Tollens\r\n" );
document.write( "6.  Q                 1,4   Disjunctive Syllogism\r\n" );
document.write( "7.  Q & ~R            5,6   Conjunction\r\n" );
document.write( "8.  S                 2,7   Modus Ponens\r\n" );
document.write( "
\n" ); document.write( "
\n" );