document.write( "Question 189545: 1) I can only use the 8 rules of inference...
\n" );
document.write( "1. P v Q
\n" );
document.write( "2.(Q • ~R) → S
\n" );
document.write( "3. R → P
\n" );
document.write( "4. ~P / S
\n" );
document.write( "________________________
\n" );
document.write( " 5.
\n" );
document.write( " 6.
\n" );
document.write( " 7.
\n" );
document.write( " 8.
\n" );
document.write( " 9.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #142219 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Note: I'm going to use the & symbol for the •\r \n" ); document.write( "\n" ); document.write( "So (Q • ~R) -> S = (Q & ~R) -> S\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. P v Q\r\n" ); document.write( "2.(Q & ~R) -> S\r\n" ); document.write( "3. R -> P\r\n" ); document.write( "4. ~P / S\r\n" ); document.write( "---------------\r\n" ); document.write( "5. ~R 3,4 Modus Tollens\r\n" ); document.write( "6. Q 1,4 Disjunctive Syllogism\r\n" ); document.write( "7. Q & ~R 5,6 Conjunction\r\n" ); document.write( "8. S 2,7 Modus Ponens\r\n" ); document.write( "\n" ); document.write( " |